N-break states in a chain of nonlinear oscillators


Abstract in English

In the present work we explore a pre-stretched oscillator chain where the nodes interact via a pairwise Lennard-Jones potential. In addition to a homogeneous solution, we identify solutions with one or more (so-called) `breaks, i.e., jumps. As a function of the canonical parameter of the system, namely the precompression strain $d$, we find that the most fundamental one break solution changes stability when the monotonicity of the Hamiltonian changes with $d$. We provide a proof for this (motivated by numerical computations) observation. This critical point separates stable and unstable segments of the one break branch of solutions. We find similar branches for 2 through 5 break branches of solutions. Each of these higher `excited state solutions possesses an additional unstable pair of eigenvalues. We thus conjecture that $k$ break solutions will possess at least $k-1$ (and at most $k$) pairs of unstable eigenvalues. Our stability analysis is corroborated by direct numerical computations of the evolutionary dynamics.

Download