Accelerating CALYPSO Structure Prediction by Data-driven Learning of Potential Energy Surface


Abstract in English

Ab initio structure prediction methods have been nowadays widely used as powerful tools for structure searches and material discovery. However, they are generally restricted to small systems owing to the heavy computational cost of underlying density functional theory (DFT) calculations. In this work, by combining state-of-art machine learning (ML) potential with our in-house developed CALYPSO structure prediction method, we developed two acceleration schemes for structure prediction toward large systems, in which ML potential is pre-constructed to fully replace DFT calculations or trained in an on-the-fly manner from scratch during the structure searches. The developed schemes have been applied to medium- and large-sized boron clusters, which are challenging cases for both construction of ML potentials and extensive structure searches. Experimental structures of B36 and B40 clusters can be readily reproduced, and the putative global minimum structure for B84 cluster is proposed, where substantially less computational cost by several orders of magnitude is evident if compared with full DFT-based structure searches. Our results demonstrate a viable route for structure prediction toward large systems via the combination of state-of-art structure prediction methods and ML techniques.

Download