A Note on Intervals in the Hales-Jewett Theorem


Abstract in English

The Hales-Jewett theorem for alphabet of size 3 states that whenever the Hales-Jewett cube [3]^n is r-coloured there is a monochromatic line (for n large). Conlon and Kamcev conjectured that, for any n, there is a 2-colouring of [3]^n for which there is no monochromatic line whose active coordinate set is an interval. In this note we disprove this conjecture.

Download