Do you want to publish a course? Click here

A Multi-Frequency Study of the Milky Way-like Spiral Galaxy NGC 6744

53   0   0.0 ( 0 )
 Added by Evan Crawford
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a multi-frequency study of the intermediate spiral SAB(r)bc type galaxy NGC 6744, using available data from the Chandra X-Ray telescope, radio continuum data from the Australia Telescope Compact Array and Murchison Widefield Array, and Wide-field Infrared Survey Explorer infrared observations. We identify 117 X-ray sources and 280 radio sources. Of these, we find nine sources in common between the X-ray and radio catalogues, one of which is a faint central black hole with a bolometric radio luminosity similar to the Milky Ways central black hole. We classify 5 objects as supernova remnant candidates, 2 objects as likely supernova remnants, 17 as HII regions, 1 source as an AGN; the remaining 255 radio sources are categorised as background objects and one X-ray source is classified as a foreground star. We find the star-formation rate (SFR) of NGC 6744 to be in the range 2.8 - 4.7 $rm{M_{odot}~yr^{-1}}$ signifying the galaxy is still actively forming stars. The specific SFR of NGC 6744 is greater than that of late-type spirals such as the Milky Way, but considerably less that that of a typical starburst galaxy.



rate research

Read More

155 - L. G. Hou 2009
The spiral structure of our Milky Way Galaxy is not yet known. HII regions and giant molecular clouds are the most prominent spiral tracers. We collected the spiral tracer data of our Milky Way from the literature, namely, HII regions and giant molecular clouds (GMCs). With weighting factors based on the excitation parameters of HII regions or the masses of GMCs, we fitted the distribution of these tracers with models of two, three, four spiral-arms or polynomial spiral arms. The distances of tracers, if not available from stellar or direct measurements, were estimated kinetically from the standard rotation curve of Brand & Blitz (1993) with $R_0$=8.5 kpc, and $Theta_0$=220 km s$^{-1}$ or the newly fitted rotation curves with $R_0$=8.0 kpc and $Theta_0$=220 km s$^{-1}$ or $R_0$=8.4 kpc and $Theta_0$=254 km s$^{-1}$. We found that the two-arm logarithmic model cannot fit the data in many regions. The three- and the four-arm logarithmic models are able to connect most tracers. However, at least two observed tangential directions cannot be matched by the three- or four-arm model. We composed a polynomial spiral arm model, which can not only fit the tracer distribution but also match observed tangential directions. Using new rotation curves with $R_0$=8.0 kpc and $Theta_0$=220 km s$^{-1}$ and $R_0$=8.4 kpc and $Theta_0$=254 km s$^{-1}$ for the estimation of kinematic distances, we found that the distribution of HII regions and GMCs can fit the models well, although the results do not change significantly compared to the parameters with the standard $R_0$ and $Theta_0$.
The magnetic fields of spiral galaxies are so strong that they cannot be primordial. Their typical values are over one billion times higher than any value predicted for the early Universe. Explaining this immense growth and incorporating it in galaxy evolution theories is one of the long-standing challenges in astrophysics. So far, the most successful theory for the sustained growth of the galactic magnetic field is the alpha-omega dynamo. This theory predicts a characteristic dipolar or quadrupolar morphology for the galactic magnetic field, which has been observed in external galaxies. However, so far, there has been no direct demonstration of a mean-field dynamo operating in direct, multi-physics simulations of spiral galaxies. We do so in this work. We employ numerical models of isolated, star-forming spiral galaxies that include a magnetized gaseous disk, a dark matter halo, stars, and stellar feedback. Naturally, the resulting magnetic field has a complex morphology that includes a strong random component. Using a smoothing of the magnetic field on small scales, we are able to separate the mean from the turbulent component and analyze them individually. We find that a mean-field dynamo naturally occurs as a result of the dynamical evolution of the galaxy and amplifies the magnetic field by an order of magnitude over half a Gyr. Despite the highly dynamical nature of these models, the morphology of the mean component of the field is identical to analytical predictions. This result underlines the importance of the mean-field dynamo in galactic evolution. Moreover, by demonstrating the natural growth of the magnetic field in a complex galactic environment, it brings us a step closer to understanding the cosmic origin of magnetic fields.
124 - Yuri N.Efremov 2010
We consider the possible pattern of the overall spiral structure of the Galaxy, using data on the distribution of neutral (atomic), molecular, and ionized hydrogen, on the base of the hypothesis of the spiral structure being symmetric, i.e. the assumption that spiral arms are translated into each other for a rotation around the galactic center by 180{deg} (a two-arm pattern) or by 90{deg} (a four-arm pattern). We demonstrate that, for the inner region, the observations are best represented with a four-arm scheme of the spiral pattern, associated with all-Galaxy spiral density waves. The basic position is that of the Carina arm, reliably determined from distances to HII regions and from HI and H2 radial velocities. This pattern is continued in the quadrants III and IV with weak outer HI arms; from their morphology, the Galaxy should be considered an asymmetric multi-arm spiral. The kneed shape of the outer arms that consist of straight segments can indicate that these arms are transient formations that appeared due to a gravitational instability in the gas disk. The distances between HI superclouds in the two arms that are the brightest in neutral hydrogen, the Carina arm and the Cygnus (Outer) arm, concentrate to two values, permitting to assume the presence of a regular magnetic field in these arms.
72 - Ye Xu , Mark Reid , Thomas Dame 2016
The nature of the spiral structure of the Milky Way has long been debated. Only in the last decade have astronomers been able to accurately measure distances to a substantial number of high-mass star-forming regions, the classic tracers of spiral structure in galaxies. We report distance measurements at radio wavelengths using the Very Long Baseline Array for eight regions of massive star formation near the Local spiral arm of the Milky Way. Combined with previous measurements, these observations reveal that the Local Arm is larger than previously thought, and both its pitch angle and star formation rate are comparable to those of the Galaxys major spiral arms, such as Sagittarius and Perseus. Toward the constellation Cygnus, sources in the Local Arm extend for a great distance along our line of sight and roughly along the solar orbit. Because of this orientation, these sources cluster both on the sky and in velocity to form the complex and long enigmatic Cygnus X region. We also identify a spur that branches between the Local and Sagittarius spiral arms.
423 - Rainer Beck 2015
The total and polarized radio continuum emission of IC 342 was observed in four wavelength bands with the Effelsberg and VLA telescopes. The frequency dependence of the radial scalelength of synchrotron emission indicates energy-dependent propagation of the cosmic-ray electrons, probably via the streaming instability. The equipartition strength of the total magnetic field is typically 15 muG, that of the ordered field 5 muG. Faraday rotation of the polarization angles reveals an underlying regular field of only about 0.5 muG strength with a large-scale axisymmetric spiral pattern, signature of a mean-field dynamo, and an about 10x stronger field that fluctuates on scales of a few 100 pc. The magnetic field around the bar in the central region of IC 342 resembles that of large barred galaxies; its regular spiral field is directed outwards, opposite to that in the disk. The polarized emission in the disk is concentrated in: (1) a narrow arm of about 300 pc width, displaced inwards with respect to the eastern arm by about 200 pc, indicating magnetic fields compressed by a density wave; (2) a broad arm of 300-500 pc width around the northern arm with systematic variations in polarized emission, polarization angles, and Faraday rotation measures on a scale of about 2 kpc, indicative of a helically twisted flux tube generated by the Parker instability; (3) a rudimentary magnetic arm in an interarm region in the north-west; (4) several broad spiral arms in the outer galaxy, related to spiral arms in the total neutral gas; (5) short features in the outer south-western galaxy, probably distorted by tidal interaction. - The generation and development of magnetic arms by a mean-field dynamo probably need a spiral pattern that is stable over a few galactic rotation periods. The dynamo in IC 342 is slow and weak, probably disturbed by the bar, tidal interaction, or a transient spiral pattern.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا