Do you want to publish a course? Click here

Transverse Extension of Partons in the Proton probed by Deeply Virtual Compton Scattering

85   0   0.0 ( 0 )
 Added by Oleg Denisov
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We report on the first measurement of exclusive single-photon muoproduction on the proton by COMPASS using 160 GeV/$c$ polarized $mu^+$ and $mu^-$ beams of the CERN SPS impinging on a liquid hydrogen target. We determine the dependence of the average of the measured $mu^+$ and $mu^-$ cross sections for deeply virtual Compton scattering on the squared four-momentum transfer $t$ from the initial to the final final proton. The slope $B$ of the $t$-dependence is fitted with a single exponential function, which yields $B=(4.3 pm 0.6_{text{stat}}_{- 0.3}^{+ 0.1}bigrvert_{text{sys}}) (text{GeV}/c)^{-2}$. This result can be converted into an average transverse extension of partons in the proton, $sqrt{langle r_{perp}^2 rangle} = (0.58 pm 0.04_{text{stat}}_{- 0.02}^{+ 0.01}bigrvert_{text{sys}})text{fm}$. For this measurement, the average virtuality of the photon mediating the interaction is $langle Q^2 rangle = 1.8,(text{GeV/}c)^2$ and the average value of the Bjorken variable is $langle x_{text{Bj}} rangle = 0.056$.



rate research

Read More

121 - E. Seder , A. Biselli , S. Pisano 2014
A measurement of the electroproduction of photons off protons in the deeply inelastic regime was performed at Jefferson Lab using a nearly 6-GeV electron beam, a longitudinally polarized proton target and the CEBAF Large Acceptance Spectrometer. Target-spin asymmetries for $epto epgamma$ events, which arise from the interference of the deeply virtual Compton scattering and the Bethe-Heitler processes, were extracted over the widest kinematics in $Q^2$, $x_B$, $t$ and $phi$, for 166 four-dimensional bins. In the framework of Generalized Parton Distributions (GPDs), at leading twist the $t$ dependence of these asymmetries provides insight on the spatial distribution of the axial charge of the proton, which appears to be concentrated in its center. These results also bring important and necessary constraints for the existing parametrizations of chiral-even GPDs.
In the past two decades, deeply virtual Compton scattering of electrons has been successfully used to advance our knowledge of the partonic structure of the free proton and investigate correlations between the transverse position and the longitudinal momentum of quarks inside the nucleon. Meanwhile, the structure of bound nucleons in nuclei has been studied in inclusive deep-inelastic lepton scattering experiments off nuclear targets, showing a significant difference in longitudinal momentum distribution of quarks inside the bound nucleon, known as the EMC effect. In this work, we report the first beam spin asymmetry (BSA) measurement of exclusive deeply virtual Compton scattering (DVCS) off a proton bound in $^4$He. The data used here were accumulated using a $6$ GeV longitudinally polarized electron beam incident on a pressurized $^4$He gaseous target placed within the CLAS spectrometer in Hall-B at the Thomas Jefferson National Accelerator Facility. The azimuthal angle ($phi$) dependence of the BSA was studied in a wide range of virtual photon and scattered proton kinematics. The $Q^2$, $x_B$, and t dependencies of the BSA on the bound proton are compared with those on the free proton. In the whole kinematical region of our measurements, the BSA on the bound proton is smaller by 20% to 40%, indicating possible medium modification of its partonic structure.
The unpolarized and polarized Beam Char-ge Asymmetries (BCAs) of the $vv{e}^{pm}p to e^{pm}p gamma$ process off unpolarized hydrogen are discussed. The measurement of BCAs with the CLAS12 spectrometer at the Thomas Jefferson National Accelerator Facility, using polarized positron and electron beams at 10.6 GeV is investigated. This experimental configuration allows to measure azimuthal and $t$-dependences of the unpolarized and polarized BCAs over a large $(x_B,Q^2)$ phase space, providing a direct access to the real part of the Compton Form Factor (CFF) ${mathcal H}$. Additionally, these measurements confront the Bethe-Heitler dominance hypothesis and eventual effects beyond leading twist. The impact of potential positron beam data on the determination of CFFs is also investigated within a local fitting approach of experimental observables. Positron data are shown to strongly reduce correlations between CFFs and consequently improve significantly the determination of $Re {rm e} [mathcal{H}]$.
Diffractive deeply virtual Compton scattering (DiDVCS) is the process $gamma^*(- Q^2) + N rightarrow rho^0 + gamma^* (Q^2)+ N$, where N is a nucleon or light nucleus, in the kinematical regime of large rapidity gap between the $rho^0$ and the final photon-nucleus system, and in the generalized Bjorken regime where both photon virtualities $Q^2$ and $ Q^2$ are large. We show that this process has the unique virtue of combining the large diffractive cross sections at high energy with the tomographic ability of deeply virtual Compton scattering to scrutinize the quark and gluon content of nucleons and light nuclei. Its study at an electron-ion collider would enlighten the internal structure of hadrons.
The proton is composed of quarks and gluons, bound by the most elusive mechanism of strong interaction called confinement. In this work, the dynamics of quarks and gluons are investigated using deeply virtual Compton scattering (DVCS): produced by a multi-GeV electron, a highly virtual photon scatters off the proton which subsequently radiates a high energy photon. Similarly to holography, measuring not only the magnitude but also the phase of the DVCS amplitude allows to perform 3D images of the internal structure of the proton. The phase is made accessible through the quantum-mechanical interference of DVCS with the Bethe-Heitler (BH) process, in which the final photon is emitted by the electron rather than the proton. We report herein the first full determination of the BH-DVCS interference by exploiting the distinct energy dependences of the DVCS and BH amplitudes. In the high energy regime where the scattering process is expected to occur off a single quark in the proton, these accurate measurements show an intriguing sensitivity to gluons, the carriers of the strong interaction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا