Do you want to publish a course? Click here

Characterization of dust activity on Mars from MY27 to MY32 by PFS-MEX observations

65   0   0.0 ( 0 )
 Added by Paulina Wolkenberg
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present spatial and temporal distributions of dust on Mars from Ls = 331 in MY26 until Ls = 80 in MY33 retrieved from the measurements taken by the Planetary Fourier Spectrometer (PFS) aboard Mars Express. In agreement with previous observations, large dust opacity is observed mostly in the southern hemisphere spring/summer and particularly over regions of higher terrain and large topographic variation. We present a comparison with dust opacities obtained from Thermal Emission Spectrometer (TES) - Mars Global Surveyor (MGS) measurements. We found good consistency between observations of two instruments during overlapping interval (Ls = 331 in MY26 until Ls = 77 in MY27). We found a different behavior of the dust opacity with latitude in the various Martian years (inter-annual variations). A global dust storm occurred in MY28. We observe a different spatial distribution, a later occurrence and dissipation of the dust maximum activity in MY28 than in other Martian years. A possible precursor signal to the global dust storm in MY 28 is observed at Ls = 200 - 235 especially over west Hellas. Heavy dust loads alter atmospheric temperatures. Due to the absorption of solar radiation and emission of infrared radiation to space by dust vertically non-uniformly distributed, a strong heating of high atmospheric levels (40 - 50 km) and cooling below around 30 km are observed.

rate research

Read More

The time variations of spectral properties of dark martian surface features are investigated using the OMEGA near-IR dataset. The analyzed period covers two Mars years, spanning from early 2004 to early 2008 (includes the 2007 global dust event). Radiative transfer modeling indicates that the apparent albedo variations of low to mid-latitude dark regions are consistent with those produced by the varying optical depth of atmospheric dust as measured simultaneously from the ground by the Mars Exploration Rovers. We observe only a few significant albedo changes that can be attributed to surface phenomena. They are small-scaled and located at the boundaries between bright and dark regions. We then investigate the variations of the mean particle size of aerosols using the evolution of the observed dark region spectra between 1 and 2.5 {mu}m. Overall, we find that the observed changes in the spectral slope are consistent with a mean particle size of aerosols varying with time between 1 and 2 {mu}m. Observations with different solar zenith angles make it possible to characterize the aerosol layer at different altitudes, revealing a decrease of the particle size of aerosols as altitude increases.
119 - S. Doute 2013
We propose a new method to retrieve the optical depth of Martian aerosols (AOD) from OMEGA and CRISM hyperspectral imagery at a reference wavelength of 1 {mu}m. Our method works even if the underlying surface is completely made of minerals, corresponding to a low contrast between surface and atmospheric dust, while being observed at a fixed geometry. Minimizing the effect of the surface reflectance properties on the AOD retrieval is the second principal asset of our method. The method is based on the parametrization of the radiative coupling between particles and gas determining, with local altimetry, acquisition geometry, and the meteorological situation, the absorption band depth of gaseous CO2. Because the last three factors can be predicted to some extent, we can define a new parameter {beta} that expresses specifically the strength of the gas-aerosols coupling while directly depending on the AOD. Combining estimations of {beta} and top of the atmosphere radiance values extracted from the observed spectra within the CO2 gas band at 2 {mu}m, we evaluate the AOD and the surface reflectance by radiative transfer inversion. One should note that practically {beta} can be estimated for a large variety of mineral or icy surfaces with the exception of CO2 ice when its 2 {mu}m solid band is not sufficiently saturated. Validation of the proposed method shows that it is reliable if two conditions are fulfilled: (i) the observation conditions provide large incidence or/and emergence angles (ii) the aerosol are vertically well mixed in the atmosphere. Experiments conducted on OMEGA nadir looking observations as well as CRISM EPF acquisitions with incidence angles higher than 65{deg} and 33{deg} respectively produce very satisfactory results. Finally in a companion paper the method is applied to monitoring atmospheric dust spring activity at high southern latitudes on Mars using OMEGA.
We have produced a multiannual climatology of airborne dust from Martian year 24 to 31 using multiple datasets of retrieved or estimated column optical depths. The datasets are based on observations of the Martian atmosphere from April 1999 to July 2013 made by different orbiting instruments: the Thermal Emission Spectrometer (TES) aboard Mars Global Surveyor, the Thermal Emission Imaging System (THEMIS) aboard Mars Odyssey, and the Mars Climate Sounder (MCS) aboard Mars Reconnaissance Orbiter (MRO). The procedure we have adopted consists of gridding the available retrievals of column dust optical depth (CDOD) from TES and THEMIS nadir observations, as well as the estimates of this quantity from MCS limb observations. Our gridding method calculates averages and uncertainties on a regularly spaced, but possibly incomplete, spatio-temporal grid, using an iterative procedure weighted in space, time, and retrieval uncertainty. In order to evaluate strengths and weaknesses of the resulting gridded maps, we validate them with independent observations of CDOD. We have statistically analyzed the irregularly gridded maps to provide an overview of the dust climatology on Mars over eight years, specifically in relation to its interseasonal and interannual variability. Finally, we have produced multiannual, regular daily maps of CDOD by spatially interpolating the irregularly gridded maps using a kriging method. These synoptic maps are used as dust scenarios in the Mars Climate Database version 5, and are useful in many modelling applications in addition to forming a basis for instrument intercomparisons. The derived dust maps for the eight available Martian years are publicly available and distributed with open access.
107 - Zhenghao Liu , Yang Liu , Lu Pan 2020
The climate on early Mars is one of the major unsolved problems. It is unclear whether early Mars was warm and wet or cold and icy. Morphological features on Mars such as sinuous ridges could provide critical constraints to address this issue. Here we investigate several sinuous ridges to the east of Tempe Terra, Mars and find they may have recorded persistent fluvial activity on early Mars. Our analysis indicates that these ridges may represent exhumation of the channel belts and overbank deposits formed from meander rivers over significant geologic time. Layered smectite-bearing minerals, distributed along the ridge flanks, could be detrital or authigenic floodplain clays. Our interpretation of the stratigraphic relationships indicates that the layered smectite-bearing materials lie between channel belt deposits, supporting the floodplain interpretation. Our results suggest that a persistent warming event has persisted for a geologically significant interval (>1500 yr) during the Noachian period of Mars.
In this paper we show that Sun-viewing images obtained by the Mars Science Laboratory (MSL) Navigation Cameras (Navcam) can be used for retrieving the dust optical depth and constrain the aerosol physical properties at Gale Crater by evaluating the sky brightness as a function of the scattering angle. We have used 65 Sun-pointing images covering a period of almost three Martian years, from MSL mission sol 21 to sol 1646 (MY 31 to 33). Radiometric calibration and geometric reduction were performed on MSL Navcam raw image data records to provide the observed sky radiance as a function of the scattering angle for the near-Sun region (scattering angle from 4{deg} to 30{deg}). These curves were fitted with a multiple scattering radiative transfer model for a plane-parallel Martian atmosphere model using the discrete ordinates method. Modelled sky brightness curves were generated as a function of two parameters: the aerosol particle size distribution effective radius and the dust column optical depth at the surface. A retrieval scheme was implemented for deriving the parameters that generated the best fitting curve under a least-square error criterion. The obtained results present a good agreement with previous work, showing the seasonal dependence of both dust column optical depth and the effectiveparticle radius.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا