On Strichartz estimates for a dispersion modulated by a time-dependent deterministic noise


Abstract in English

We address the Cauchy problem for a nonlinear Schr{o}dinger equation where the dispersion is modulated by a deterministic noise. The noise is understood as the derivative of a self-affine function of order H $in$ (0, 1). Due to the self-similarity of the noise, we obtain modified Strichartz estimates which enables us to prove the global well-posedness of the equation for L2-supercritical nonlinearities. This is an occurence of regularization by noise in a purely deterministic context.

Download