Do you want to publish a course? Click here

On Strichartz estimates for a dispersion modulated by a time-dependent deterministic noise

53   0   0.0 ( 0 )
 Added by Romain Duboscq
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We address the Cauchy problem for a nonlinear Schr{o}dinger equation where the dispersion is modulated by a deterministic noise. The noise is understood as the derivative of a self-affine function of order H $in$ (0, 1). Due to the self-similarity of the noise, we obtain modified Strichartz estimates which enables us to prove the global well-posedness of the equation for L2-supercritical nonlinearities. This is an occurence of regularization by noise in a purely deterministic context.



rate research

Read More

In this paper, we investigate a stochastic Hardy-Littlewood-Sobolev inequality. Due to the stochastic nature of the inequality, the relation between the exponents of intgrability is modified. This modification can be understood as a regularization by noise phenomenon. As a direct application, we derive Strichartz estimates for the white noise dispersion which enables us to address a conjecture from [3].
Using a new local smoothing estimate of the first and third authors, we prove local-in-time Strichartz and smoothing estimates without a loss exterior to a large class of polygonal obstacles with arbitrary boundary conditions and global-in-time Strichartz estimates without a loss exterior to a large class of polygonal obstacles with Dirichlet boundary conditions. In addition, we prove a global-in-time local smoothing estimate in exterior wedge domains with Dirichlet boundary conditions and discuss some nonlinear applications.
We prove Strichartz estimates with a loss of derivatives for the Schrodinger equation on polygonal domains with either Dirichlet or Neumann homogeneous boundary conditions. Using a standard doubling procedure, estimates the on polygon follow from those on Euclidean surfaces with conical singularities. We develop a Littlewood-Paley squarefunction estimate with respect to the spectrum of the Laplacian on these spaces. This allows us to reduce matters to proving estimates at each frequency scale. The problem can be localized in space provided the time intervals are sufficiently small. Strichartz estimates then follow from a result of the second author regarding the Schrodinger equation on the Euclidean cone.
We consider the solution operator for the wave equation on the flat Euclidean cone over the circle of radius $rho > 0$, the manifold $mathbb{R}_+ times mathbb{R} / 2 pi rho mathbb{Z}$ equipped with the metric $g(r,theta) = dr^2 + r^2 dtheta^2$. Using explicit representations of the solution operator in regions related to flat wave propagation and diffraction by the cone point, we prove dispersive estimates and hence scale invariant Strichartz estimates for the wave equation on flat cones. We then show that this yields corresponding inequalities on wedge domains, polygons, and Euclidean surfaces with conic singularities. This in turn yields well-posedness results for the nonlinear wave equation on such manifolds. Morawetz estimates on the cone are also treated.
We study dispersive properties for the wave equation in the Schwarzschild space-time. The first result we obtain is a local energy estimate. This is then used, following the spirit of earlier work of Metcalfe-Tataru, in order to establish global-in-time Strichartz estimates. A considerable part of the paper is devoted to a precise analysis of solutions near the trapping region, namely the photon sphere.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا