Do you want to publish a course? Click here

An Empirical Evaluation of Deep Learning for ICD-9 Code Assignment using MIMIC-III Clinical Notes

109   0   0.0 ( 0 )
 Added by Jinmiao Huang
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Background and Objective: Code assignment is of paramount importance in many levels in modern hospitals, from ensuring accurate billing process to creating a valid record of patient care history. However, the coding process is tedious and subjective, and it requires medical coders with extensive training. This study aims to evaluate the performance of deep-learning-based systems to automatically map clinical notes to ICD-9 medical codes. Methods: The evaluations of this research are focused on end-to-end learning methods without manually defined rules. Traditional machine learning algorithms, as well as state-of-the-art deep learning methods such as Recurrent Neural Networks and Convolution Neural Networks, were applied to the Medical Information Mart for Intensive Care (MIMIC-III) dataset. An extensive number of experiments was applied to different settings of the tested algorithm. Results: Findings showed that the deep learning-based methods outperformed other conventional machine learning methods. From our assessment, the best models could predict the top 10 ICD-9 codes with 0.6957 F1 and 0.8967 accuracy and could estimate the top 10 ICD-9 categories with 0.7233 F1 and 0.8588 accuracy. Our implementation also outperformed existing work under certain evaluation metrics. Conclusion: A set of standard metrics was utilized in assessing the performance of ICD-9 code assignment on MIMIC-III dataset. All the developed evaluation tools and resources are available online, which can be used as a baseline for further research.

rate research

Read More

Our objective in this study is to investigate the behavior of Boolean operators on combining annotation output from multiple Natural Language Processing (NLP) systems across multiple corpora and to assess how filtering by aggregation of Unified Medical Language System (UMLS) Metathesaurus concepts affects system performance for Named Entity Recognition (NER) of UMLS concepts. We used three corpora annotated for UMLS concepts: 2010 i2b2 VA challenge set (31,161 annotations), Multi-source Integrated Platform for Answering Clinical Questions (MiPACQ) corpus (17,457 annotations including UMLS concept unique identifiers), and Fairview Health Services corpus (44,530 annotations). Our results showed that for UMLS concept matching, Boolean ensembling of the MiPACQ corpus trended towards higher performance over individual systems. Use of an approximate grid-search can help optimize the precision-recall tradeoff and can provide a set of heuristics for choosing an optimal set of ensembles.
Medical code assignment, which predicts medical codes from clinical texts, is a fundamental task of intelligent medical information systems. The emergence of deep models in natural language processing has boosted the development of automatic assignment methods. However, recent advanced neural architectures with flat convolutions or multi-channel feature concatenation ignore the sequential causal constraint within a text sequence and may not learn meaningful clinical text representations, especially for lengthy clinical notes with long-term sequential dependency. This paper proposes a Dilated Convolutional Attention Network (DCAN), integrating dilated convolutions, residual connections, and label attention, for medical code assignment. It adopts dilated convolutions to capture complex medical patterns with a receptive field which increases exponentially with dilation size. Experiments on a real-world clinical dataset empirically show that our model improves the state of the art.
Numerous groups have applied a variety of deep learning techniques to computer vision problems in highway perception scenarios. In this paper, we presented a number of empirical evaluations of recent deep learning advances. Computer vision, combined with deep learning, has the potential to bring about a relatively inexpensive, robust solution to autonomous driving. To prepare deep learning for industry uptake and practical applications, neural networks will require large data sets that represent all possible driving environments and scenarios. We collect a large data set of highway data and apply deep learning and computer vision algorithms to problems such as car and lane detection. We show how existing convolutional neural networks (CNNs) can be used to perform lane and vehicle detection while running at frame rates required for a real-time system. Our results lend credence to the hypothesis that deep learning holds promise for autonomous driving.
Multi-Task Learning (MTL) aims at boosting the overall performance of each individual task by leveraging useful information contained in multiple related tasks. It has shown great success in natural language processing (NLP). Currently, a number of MLT architectures and learning mechanisms have been proposed for various NLP tasks. However, there is no systematic exploration and comparison of different MLT architectures and learning mechanisms for their strong performance in-depth. In this paper, we conduct a thorough examination of typical MTL methods on a broad range of representative NLP tasks. Our primary goal is to understand the merits and demerits of existing MTL methods in NLP tasks, thus devising new hybrid architectures intended to combine their strengths.
In the United States, 25% or greater than 200 billion dollars of hospital spending accounts for administrative costs that involve services for medical coding and billing. With the increasing number of patient records, manual assignment of the codes performed is overwhelming, time-consuming and error-prone, causing billing errors. Natural language processing can automate the extraction of codes/labels from unstructured clinical notes, which can aid human coders to save time, increase productivity, and verify medical coding errors. Our objective is to identify appropriate diagnosis and procedure codes from clinical notes by performing multi-label classification. We used de-identified data of critical care patients from the MIMIC-III database and subset the data to select the ten (top-10) and fifty (top-50) most common diagnoses and procedures, which covers 47.45% and 74.12% of all admissions respectively. We implemented state-of-the-art Bidirectional Encoder Representations from Transformers (BERT) to fine-tune the language model on 80% of the data and validated on the remaining 20%. The model achieved an overall accuracy of 87.08%, an F1 score of 85.82%, and an AUC of 91.76% for top-10 codes. For the top-50 codes, our model achieved an overall accuracy of 93.76%, an F1 score of 92.24%, and AUC of 91%. When compared to previously published research, our model outperforms in predicting codes from the clinical text. We discuss approaches to generalize the knowledge discovery process of our MIMIC-BERT to other clinical notes. This can help human coders to save time, prevent backlogs, and additional costs due to coding errors.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا