No Arabic abstract
We improve the accuracy of photometric redshifts by including low-resolution spectral data from the G102 grism on the Hubble Space Telescope, which assists in redshift determination by further constraining the shape of the broadband Spectral Energy Disribution (SED) and identifying spectral features. The photometry used in the redshift fits includes near-IR photometry from FIGS+CANDELS, as well as optical data from ground-based surveys and HST ACS, and mid-IR data from Spitzer. We calculated the redshifts through the comparison of measured photometry with template galaxy models, using the EAZY photometric redshift code. For objects with F105W $< 26.5$ AB mag with a redshift range of $0 < z < 6$, we find a typical error of $Delta z = 0.03 * (1+z)$ for the purely photometric redshifts; with the addition of FIGS spectra, these become $Delta z = 0.02 * (1+z)$, an improvement of 50%. Addition of grism data also reduces the outlier rate from 8% to 7% across all fields. With the more-accurate spectrophotometric redshifts (SPZs), we searched the FIGS fields for galaxy overdensities. We identified 24 overdensities across the 4 fields. The strongest overdensity, matching a spectroscopically identified cluster at $z=0.85$, has 28 potential member galaxies, of which 8 have previous spectroscopic confirmation, and features a corresponding X-ray signal. Another corresponding to a cluster at $z=1.84$ has 22 members, 18 of which are spectroscopically confirmed. Additionally, we find 4 overdensities that are detected at an equal or higher significance in at least one metric to the two confirmed clusters.
The Faint Infrared Grism Survey (FIGS) is a deep Hubble Space Telescope (HST) WFC3/IR (Wide Field Camera 3 Infrared) slitless spectroscopic survey of four deep fields. Two fields are located in the Great Observatories Origins Deep Survey-North (GOODS-N) area and two fields are located in the Great Observatories Origins Deep Survey-South (GOODS-S) area. One of the southern fields selected is the Hubble Ultra Deep Field. Each of these four fields were observed using the WFC3/G102 grism (0.8$mu m$-1.15$mu m$ continuous coverage) with a total exposure time of 40 orbits (~ 100 kilo-seconds) per field. This reaches a 3 sigma continuum depth of ~26 AB magnitudes and probes emission lines to $approx 10^{-17} erg s^{-1} cm^{-2}$. This paper details the four FIGS fields and the overall observational strategy of the project. A detailed description of the Simulation Based Extraction (SBE) method used to extract and combine over 10000 spectra of over 2000 distinct sources brighter than m_F105W=26.5 mag is provided. High fidelity simulations of the observations is shown to significantly improve the background subtraction process, the spectral contamination estimates, and the final flux calibration. This allows for the combination of multiple spectra to produce a final high quality, deep, 1D-spectra for each object in the survey.
We derive direct measurement gas-phase metallicities of $7.4 < 12 + log(O/H) < 8.4$ for 14 low-mass Emission Line Galaxies (ELGs) at $0.3 < z < 0.8$ identified in the Faint Infrared Grism Survey (FIGS). We use deep slitless G102 grism spectroscopy of the Hubble Ultra Deep Field (HUDF), dispersing light from all objects in the field at wavelengths between 0.85 and 1.15 microns. We run an automatic search routine on these spectra to robustly identify 71 emission line sources, using archival data from VLT/MUSE to measure additional lines and confirm redshifts. We identify 14 objects with $0.3 < z < 0.8$ with measurable O[III]$lambda$4363 AA emission lines in matching VLT/MUSE spectra. For these galaxies, we derive direct electron-temperature gas-phase metallicities with a range of $7.4 < 12 + log(O/H) < 8.4$. With matching stellar masses in the range of $10^{7.9} M_{odot} < M_{star} < 10^{10.4} M_{odot}$, we construct a mass-metallicity (MZ) relation and find that the relation is offset to lower metallicities compared to metallicities derived from alternative methods (e.g.,$R_{23}$, O3N2, N2O2) and continuum selected samples. Using star formation rates (SFR) derived from the $Halpha$ emission line, we calculate our galaxies position on the Fundamental Metallicity Relation (FMR), where we also find an offset toward lower metallicities. This demonstrates that this emission-line-selected sample probes objects of low stellar masses but even lower metallicities than many comparable surveys. We detect a trend suggesting galaxies with higher Specific Star Formation (SSFR) are more likely to have lower metallicity. This could be due to cold accretion of metal-poor gas that drives star formation, or could be because outflows of metal-rich stellar winds and SNe ejecta are more common in galaxies with higher SSFR.
We present the results from the application of a two-dimensional emission line detection method, EMission-line two-Dimensional (EM2D), to the near-infrared G102 grism observations obtained with the Wide-Field Camera 3 (WFC3) as part of the Cycle 22 {em Hubble Space Telescope} Treasury Program: the Faint Infrared Grism Survey (FIGS). Using the EM2D method, we have assembled a catalog of emission line galaxies (ELGs) with resolved star formation from each of the four FIGS fields. Not only can one better assess the global properties of ELGs, but the EM2D method allows for the analysis and an improved study of the individual emission-line region {it within} each galaxy. This paper includes a description of the methodology, advantages, and the first results of the EM2D method applied to ELGs in FIGS. The advantage of 2D emission line measurements includes significant improvement of galaxy redshift measurements, approaching the level of accuracy seen in high-spectral-resolution data, but with greater efficiency; and the ability to identify and measure the properties of multiple sites of star-formation and over scales of $sim$ 1 kpc within individual galaxies out to z $sim$ 4. The EM2D method also significantly improves the reliability of high-redshift ($zsim7$) Lyman-$alpha$ detections. Coupled with the wide field of view and high efficiency of space-based grism observations, EM2D provides a noteworthy improvement on the physical parameters that can be extracted from grism observations.
We present the results of an unbiased search for Ly{alpha} emission from continuum-selected 6 < z < 8 galaxies. Our dataset consists of 160 orbits of G102 slitless grism spectroscopy obtained with the Hubble Space Telescope (HST) Wide Field Camera 3 as part of the Faint Infrared Grism Survey (FIGS; PI: Malhotra), which obtains deep slitless spectra of all sources in four fields, and was designed to minimize contamination in observations of previously-identified high-redshift galaxy candidates. The FIGS data can potentially spectroscopically confirm the redshifts of galaxies, and as Ly{alpha} emission is resonantly scattered by neutral gas, FIGS can also constrain the ionization state of the intergalactic medium (IGM) during the epoch of reionization. These data have sufficient depth to detect Ly{alpha} emission in this epoch, as Tilvi et al. (2016) have published the FIGS detection of previously known (Finkelstein et al. 2013) Ly{alpha} emission at z = 7.51. The FIGS data use five separate roll-angles of HST to mitigate the contamination by nearby galaxies. We created a method that accounts for and removes the contamination from surrounding galaxies, and also removes any dispersed continuum light from each individual spectrum (Pirzkal et al. 2017). We searched for significant (> 4{sigma}) emission lines using two different automated detection methods, free of any visual inspection biases. Applying these methods on photometrically-selected high-redshift candidates between 6 < z < 8 we find two emission lines, one previously published by Tilvi et al. (2016), and a new line at 1.028{mu}m. We identify this lines as Ly{alpha} at z = 7.452 +/- 0.003. This newly spectroscopically confirmed galaxy has the highest Ly{alpha} rest-frame equivalent width (EW Ly{alpha}) yet published at z > 7 (140.3 +/- 19.0{AA}).
We study tidal features (TFs) around galaxies in the REsolved Spectroscopy of a Local VolumE (RESOLVE) survey. Our sample consists of 1048 RESOLVE galaxies that overlap with the DECam Legacy Survey, which reaches an r-band 3$sigma$ depth of $sim$27.9 mag arcsec$^{-2}$ for a 100 arcsec$^{2}$ feature. Images were masked, smoothed, and inspected for TFs like streams, shells, or tails/arms. We find TFs in 17$^{pm 2} %$ of our galaxies, setting a lower limit on the true frequency. The frequency of TFs in the gas-poor (gas-to-stellar mass ratio $<$ 0.1) subsample is lower than in the gas-rich subsample (13$^{pm 3} %$ vs. 19$^{pm 2} %$). Within the gas-poor subsample, galaxies with TFs have higher stellar and halo masses, $sim 3times$ closer distances to nearest neighbors (in the same group), and possibly fewer group members at fixed halo mass than galaxies without TFs, but similar specific star formation rates. These results suggest TFs in gas-poor galaxies are typically streams/shells from dry mergers or satellite disruption. In contrast, the presence of TFs around gas-rich galaxies does not correlate with stellar or halo mass, suggesting these TFs are often tails/arms from resonant interactions. Similar to TFs in gas-poor galaxies, TFs in gas-rich galaxies imply 1.7x closer nearest neighbors in the same group; however, TFs in gas-rich galaxies are associated with diskier morphologies, higher star formation rates, and higher gas content. In addition to interactions with known neighbors, we suggest that TFs in gas-rich galaxies may arise from accretion of cosmic gas and/or gas-rich satellites below the survey limit.