Do you want to publish a course? Click here

Magnetic oscillations Excited by Concurrent Spin Injection from a Tunneling Current and a Spin Hall Current

75   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, a 3-terminal spin-transfer torque nano-oscillator (STNO) is studied using the concurrent spin injection of a spin-polarized tunneling current and a spin Hall current exciting the free layer into dynamic regimes beyond what is achieved by each individual mechanism. The pure spin injection is capable of inducing oscillations in the absence of charge currents effectively reducing the critical tunneling current to zero. This reduction of the critical charge currents can improve the endurance of both STNOs and non-volatile magnetic memories (MRAM) devices. It is shown that the system response can be described in terms of an injected spin current density $J_s$ which results from the contribution of both spin injection mechanisms, with the tunneling current polarization $p$ and the spin Hall angle $theta$ acting as key parameters determining the efficiency of each injection mechanism. The experimental data exhibits an excellent agreement with this model which can be used to quantitatively predict the critical points ($J_s = -2.26pm 0.09 times 10^9 hbar/e$ A/m$^2$) and the oscillation amplitude as a function of the input currents. In addition, the fitting of the data also allows an independent confirmation of the values estimated for the spin Hall angle and tunneling current polarization as well as the extraction of the damping $alpha = 0.01$ and non-linear damping $Q = 3.8pm 0.3$ parameters.



rate research

Read More

Excitation of magnetization dynamics by pure spin currents has been recently recognized as an enabling mechanism for spintronics and magnonics, which allows implementation of spin-torque devices based on low-damping insulating magnetic materials. Here we report the first spatially-resolved study of the dynamic modes excited by pure spin current in nanometer-thick microscopic insulating Yttrium Iron Garnet disks. We show that these modes exhibit nonlinear self-broadening preventing the formation of the self-localized magnetic bullet, which plays a crucial role in the stabilization of the single-mode magnetization oscillations in all-metallic systems. This peculiarity associated with the efficient nonlinear mode coupling in low-damping materials can be among the main factors governing the interaction of pure spin currents with the dynamic magnetization in high-quality magnetic insulators.
The spin injection and accumulation in metallic lateral spin valves with transparent interfaces is studied using d.c. injection current. Unlike a.c.-based techniques, this allows investigating the effects of the direction and magnitude of the injected current. We find that the spin accumulation is reversed by changing the direction of the injected current, whereas its magnitude does not change. The injection mechanism for both current directions is thus perfectly symmetric, leading to the same spin injection efficiency for both spin types. This result is accounted for by a spin-dependent diffusion model. Joule heating increases considerably the local temperature in the spin valves when high current densities are injected ($sim$80--105 K for 1--2$times10^{7}$A cm$^{-2}$), strongly affecting the spin accumulation.
100 - Yang Gao 2021
Weyl semimetals are well-known for hosting topologically protected linear band crossings, serving as the analog of the relativistic Weyl Fermions in the condensed matter context. Such analogy persists deeply, allowing the existence of the chiral anomaly under parallel electric and magnetic field in Weyl semimetals. Different from such picture, here we show that, a unique mechanism of the chiral anomaly exists in Weyl semimetals by injecting a spin current with parallel spin polarization and flow direction. The existence of such a chiral anomaly is protected by the topological feature that each Weyl cone can also be a source or drain of the spin field in the momentum space. It leads to measurable experimental signals, such as an electric charge current parallel with an applied magnetic field in the absence of the electric field, and a sharp peak at certain resonant frequency in the injection current in achiral Weyl semimetals through the circular photogalvanic effect. Our work shows that the topological implication of Weyl semimetals goes beyond the link with relativistic Weyl Fermions, and offers a promising scenario to examine the interplay between topology and spin.
68 - R. J. Elliott 2003
A possibility is discussed of observing spin injection effect on the ferromagnet domain structure by means of resonant excitation of the domain wall oscillations by a spin-polarized ac injection current. The natural frequency of the domain wall oscillations in a thin ferromagnetic film with parallel anisotropy is calculated. Amplitude of the domain wall forced oscillations excited by the spin-polarized ac current is determined. Then effect of such oscillations on the current is considered and appearance of nonlinear phenomena such as rectification of the ac current and second harmonic generation is predicted.
We theoretically examine the spin-transfer torque in the presence of spin-orbit interaction (SOI) at impurities in a ferromagnetic metal on the basis of linear response theory. We obtained, in addition to the usual spin-transfer torque, a new contributioin $sim {bm j}_{rm SH}^{phantom{dagger}} cdot abla {bm n}$ in the first order in SOI, where ${bm j}_{rm SH}^{phantom{dagger}}$ is the spin Hall current driven by an external electric field. This is a reaction to inverse spin Hall effect driven by spin motive force in a ferromagnet.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا