Do you want to publish a course? Click here

Restoring size consistency of approximate functionals constructed from the adiabatic connection

50   0   0.0 ( 0 )
 Added by Eduardo Fabiano
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Approximate exchange-correlation functionals built by modeling in a non-linear way the adiabatic connection (AC) integrand of density functional theory have many attractive features, being virtually parameters-free and satisfying different exact properties, but they also have a fundamental flaw: they violate the size-consistency condition, crucial to evaluate interaction energies of molecular systems. We show that size consistency in the AC-based functionals can be restored in a very simple way at no extra computational cost. Results on a large set of benchmark molecular interaction energies show that functionals based on the interaction strength interpolation approximations are significantly more accurate than the second-order perturbation theory.



rate research

Read More

We have studied the correlation potentials produced by various adiabatic connection models (ACM) for several atoms and molecules. The results have been compared to accurate reference potentials (coupled cluster and quantum Monte Carlo results) as well as to state-of-the-art ab initio DFT approaches. We have found that all the ACMs yield correlation potentials that exhibit a correct behavior, quite resembling scaled second-order Gorling-Levy (GL2) potentials, and including most of the physically meaningful features of the accurate reference data. The behavior and contribution of the strong-interaction limit potentials has also been investigated and discussed.
The average energy curvature as a function of the particle number is a molecule-specific quantity, which measures the deviation of a given functional from the exact conditions of density functional theory (DFT). Related to the lack of derivative discontinuity in approximate exchange-correlation potentials, the information about the curvature has been successfully used to restore the physical meaning of Kohn-Sham orbital eigenvalues and to develop non-empirical tuning and correction schemes for density functional approximations. In this work, we propose the construction of a machine-learning framework targeting the average energy curvature between the neutral and the radical cation state of thousands of small organic molecules (QM7 database). The applicability of the model is demonstrated in the context of system-specific gamma-tuning of the LC-$omega$PBE functional and validated against the molecular first ionization potentials at equation-of-motion (EOM) coupled-cluster references. In addition, we propose a local version of the non-linear regression model and demonstrate its transferability and predictive power by determining the optimal range-separation parameter for two large molecules relevant to the field of hole-transporting materials. Finally, we explore the underlying structure of the QM7 database with the t-SNE dimensionality-reduction algorithm and identify structural and compositional patterns that promote the deviation from the piecewise linearity condition.
A G{o}rling-Levy (GL)-based perturbation theory along the range-separated adiabatic connection is assessed for the calculation of electronic excitation energies. In comparison with the Rayleigh-Schr{o}dinger (RS)-based perturbation theory introduced in a previous work [E. Rebolini, J. Toulouse, A. M. Teale, T. Helgaker, A. Savin, Mol. Phys. 113, 1740 (2015)], this GL-based perturbation theory keeps the ground-state density constant at each order and thus gives the correct ionization energy at each order. Excitation energies up to first order in the perturbation have been calculated numerically for the helium and beryllium atoms and the hydrogen molecule without introducing any density-functional approximations. In comparison with the RS-based perturbation theory, the present GL-based perturbation theory gives much more accurate excitation energies for Rydberg states but similar excitation energies for valence states.
Including quantum mechanical effects on the dynamics of nuclei in the condensed phase is challenging, because the complexity of exact methods grows exponentially with the number of quantum degrees of freedom. Efforts to circumvent these limitations can be traced down to two approaches: methods that treat a small subset of the degrees of freedom with rigorous quantum mechanics, considering the rest of the system as a static or classical environment, and methods that treat the whole system quantum mechanically, but using approximate dynamics. Here we perform a systematic comparison between these two philosophies for the description of quantum effects in vibrational spectroscopy, taking the Embedded Local Monomer (LMon) model and a mixed quantum-classical (MQC) model as representatives of the first family of methods, and centroid molecular dynamics (CMD) and thermostatted ring polymer molecular dynamics (TRPMD) as examples of the latter. We use as benchmarks D$_2$O doped with HOD and pure H$_2$O at three distinct thermodynamic state points (ice Ih at 150K, and the liquid at 300K and 600K), modeled with the simple q-TIP4P/F potential energy and dipole moment surfaces. With few exceptions the different techniques yield IR absorption frequencies that are consistent with one another within a few tens of cm$^{-1}$. Comparison with classical molecular dynamics demonstrates the importance of nuclear quantum effects up to the highest temperature, and a detailed discussion of the discrepancies between the various methods let us draw some (circumstantial) conclusions about the impact of the very different approximations that underlie them. Such cross validation between radically different approaches could indicate a way forward to further improve the state of the art in simulations of condensed-phase quantum dynamics.
A simple and completely general representation of the exact exchange-correlation functional of density-functional theory is derived from the universal Lieb-Oxford bound, which holds for any Coulomb-interacting system. This representation leads to an alternative point of view on popular hybrid functionals, providing a rationale for why they work and how they can be constructed. A similar representation of the exact correlation functional allows to construct fully non-empirical hyper-generalized-gradient approximations (HGGAs), radically departing from established paradigms of functional construction. Numerical tests of these HGGAs for atomic and molecular correlation energies and molecular atomization energies show that even simple HGGAs match or outperform state-of-the-art correlation functionals currently used in solid-state physics and quantum chemistry.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا