Tight Bounds on the Asymptotic Descriptive Complexity of Subgraph Isomorphism


Abstract in English

Let $v(F)$ denote the number of vertices in a fixed connected pattern graph $F$. We show an infinite family of patterns $F$ such that the existence of a subgraph isomorphic to $F$ is expressible by a first-order sentence of quantifier depth $frac23,v(F)+1$, assuming that the host graph is sufficiently large and connected. On the other hand, this is impossible for any $F$ with using less than $frac23,v(F)-2$ first-order variables.

Download