Do you want to publish a course? Click here

Growth and characterization of a Li2Mg2(MoO4)3 scintillating bolometer

63   0   0.0 ( 0 )
 Added by Fedor Danevich
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Lithium magnesium molybdate (Li$_2$Mg$_2$(MoO$_4$)$_3$) crystals were grown by the low-thermal-gradient Czochralski method. Luminescence properties of the material (emission spectra, thermally stimulated luminescence, dependence of intensity on temperature, phosphorescence) have been studied under X-Ray excitation in the temperature interval from 8 K to 400 K, while at the same being operated as a scintillating bolometer at 20 mK for the first time. We demonstrated that Li$_2$Mg$_2$(MoO$_4)_3$ crystals are a potentially promising detector material to search for neutrinoless double beta decay of $^{100}$Mo.



rate research

Read More

The LUMINEU program aims at performing a pilot experiment on neutrinoless double beta decay of 100Mo using radiopure ZnMoO4 crystals operated as scintillating bolometers. Growth of high quality radiopure crystals is a complex task, since there are no commercially available molybdenum compounds with the required levels of purity and radioactive contamination. This paper discusses approaches to purify molybdenum and synthesize compound for high quality radiopure ZnMoO4 crystal growth. A combination of a double sublimation (with addition of zinc molybdate) with subsequent recrystallization in aqueous solutions (using zinc molybdate as a collector) was used. Zinc molybdate crystals up to 1.5 kg were grown by the low-thermal-gradient Czochralski technique, their optical, luminescent, diamagnetic, thermal and bolometric properties were tested.
The light collection of several fiber configurations embedded in a box-shaped plastic scintillating counter was studied by scanning with minimum ionizing electrons. The light was read out by silicon photomultipliers at both ends. The light yield produced by the 855-MeV beam of the Mainz Microtron showed a strong dependence on the transverse distance from the beam position to the fibers. The observations were modeled by attributing the collection of indirect light inside of the counter and of direct light reaching a fiber to the total light yield. The light collection with fibers was compared to that of a scintillating counter without fibers. These studies were carried out within the development of plastic scintillating detectors as an active veto system for the DarkMESA electron beam-dump experiment that will search for light dark matter particles in the MeV mass range.
A scintillating bolometer based on a large cubic Li$_{2}$$^{100}$MoO$_4$ crystal (45 mm side) and a Ge wafer (scintillation detector) has been operated in the CROSS cryogenic facility at the Canfranc underground laboratory in Spain. The dual-readout detector is a prototype of the technology that will be used in the next-generation $0 u2beta$ experiment CUPID. The measurements were performed at 18 and 12 mK temperature in a pulse tube dilution refrigerator. This setup utilizes the same technology as the CUORE cryostat that will host CUPID and so represents an accurate estimation of the expected performance. The Li$_{2}$$^{100}$MoO$_4$ bolometer shows a high energy resolution of 6 keV FWHM at the 2615 keV $gamma$ line. The detection of scintillation light for each event triggered by the Li$_{2}$$^{100}$MoO$_4$ bolometer allowed for a full separation ($sim$8$sigma$) between $gamma$($beta$) and $alpha$ events above 2 MeV. The Li$_{2}$$^{100}$MoO$_4$ crystal also shows a high internal radiopurity with $^{228}$Th and $^{226}$Ra activities of less than 3 and 8 $mu$Bq/kg, respectively. Taking also into account the advantage of a more compact and massive detector array, which can be made of cubic-shaped crystals (compared to the cylindrical ones), this test demonstrates the great potential of cubic Li$_{2}$$^{100}$MoO$_4$ scintillating bolometers for high-sensitivity searches for the $^{100}$Mo $0 u2beta$ decay in CROSS and CUPID projects.
This paper reports on the development of a technology involving $^{100}$Mo-enriched scintillating bolometers, compatible with the goals of CUPID, a proposed next-generation bolometric experiment to search for neutrinoless double-beta decay. Large mass ($sim$1~kg), high optical quality, radiopure $^{100}$Mo-containing zinc and lithium molybdate crystals have been produced and used to develop high performance single detector modules based on 0.2--0.4~kg scintillating bolometers. In particular, the energy resolution of the lithium molybdate detectors near the $Q$-value of the double-beta transition of $^{100}$Mo (3034~keV) is 4--6~keV FWHM. The rejection of the $alpha$-induced dominant background above 2.6~MeV is better than 8$sigma$. Less than 10~$mu$Bq/kg activity of $^{232}$Th ($^{228}$Th) and $^{226}$Ra in the crystals is ensured by boule recrystallization. The potential of $^{100}$Mo-enriched scintillating bolometers to perform high sensitivity double-beta decay searches has been demonstrated with only 10~kg$times$d exposure: the two neutrino double-beta decay half-life of $^{100}$Mo has been measured with the up-to-date highest accuracy as $T_{1/2}$ = [6.90 $pm$ 0.15(stat.) $pm$ 0.37(syst.)] $times$ 10$^{18}$~yr. Both crystallization and detector technologies favor lithium molybdate, which has been selected for the ongoing construction of the CUPID-0/Mo demonstrator, containing several kg of $^{100}$Mo.
New generation high-energy physics experiments demand high precision tracking and accurate measurements of a large number of particles produced in the collisions of lementary particles and heavy-ions. Silicon-tungsten (Si-W) calorimeters provide the most viable technological option to meet the requirements of particle detection in high multiplicity environments. We report a novel Si-W calorimeter design, which is optimized for $gamma/pi^0$ discrimination up to high momenta. In order to test the feasibility of the calorimeter, a prototype mini-tower was constructed using silicon pad detector arrays and tungsten layers. The performance of the mini-tower was tested using pion and electron beams at the CERN Proton Synchrotron (PS). The experimental results are compared with the results from a detailed GEANT-4 simulation. A linear relationship between the observed energy deposition and simulated response of the mini-tower has been obtained, in line with our expectations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا