Do you want to publish a course? Click here

Accurate optical properties from first principles: a Quasiparticle Self consistent GW plus Bethe-Salpeter Equation approach

236   0   0.0 ( 0 )
 Added by Brian Cunningham Dr
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an approach to calculate the optical absorption spectra that combines the quasiparticle self-consistent GW method [Phys. Rev. B, 76 165106 (2007)] for the electronic structure with the solution of the ladder approximation to the Bethe-Salpeter equation for the macroscopic dielectric function. The solution of the Bethe-Salpeter equation has been implemented within an all-electron framework, using a linear muffin-tin orbital basis set, with the contribution from the non-local self-energy to the transition dipole moments (in the optical limit) evaluated explicitly. This approach addresses those systems whose electronic structure is poorly described within the standard perturbative GW approaches with as a starting point density-functional theory calculations. The merits of this approach have been exemplified by calculating optical absorption spectra of a strongly correlated transition metal oxide, NiO, and a narrow gap semiconductor, Ge. In both cases, the calculated spectrum is in good agreement with the experiment. It is also shown that for systems whose electronic structure is well-described within the standard perturbative GW, such as Si, LiF and h-BN, the performance of the present approach is in general comparable to the standard GW plus Bethe-Salpeter equation. It is argued that both vertex corrections to the electronic screening and the electron-phonon interaction are responsible for the observed systematic overestimation of the fundamental bandgap and spectrum onset.



rate research

Read More

The discovery of atomically thin two-dimensional (2D) magnetic semiconductors has triggered enormous research interest recently. In this work, we use first-principles many-body perturbation theory to study a prototypical 2D ferromagnetic semiconductor, monolayer chromium tribromide (CrBr$_3$). With broken time-reversal symmetry, spin-orbit coupling, and excitonic effects included through the full-spinor $GW$ and $GW$ plus Bethe-Salpeter equation ($GW$-BSE) methods, we compute the frequency-dependent dielectric function tensor that governs the optical and magneto-optical properties. In addition, we provide a detailed theoretical formalism for simulating magnetic circular dichroism, magneto-optical Kerr effect, and Faraday effect, demonstrating the approach with monolayer CrBr$_3$. Due to reduced dielectric screening in 2D and localized nature of the Cr d orbitals, we find strong self-energy effects on the quasiparticle band structure of monolayer CrBr$_3$ that give a 3.8 eV indirect band gap. Also, excitonic effects dominate the low-energy optical and magneto-optical responses in monolayer CrBr$_3$ where a large exciton binding energy of 2.3 eV is found for the lowest bright exciton state with excitation energy at 1.5 eV. We further find that the magneto-optical signals demonstrate strong dependence on the excitation frequency and substrate refractive index. Our theoretical framework for modelling optical and magneto-optical effects could serve as a powerful theoretical tool for future study of optoelectronic and spintronics devices consisting of van der Waals 2D magnets.
In the development of highly efficient photovoltaic cells, solid perovskite systems have demonstrated unprecedented promise, with the figure of merit exceeding nineteen percent of efficiency. In this paper, we investigate the optical and vibrational properties of organometallic cubic perovskite CH3NH3PbI3 using first-principles calculations. For accurate theoretical description, we go beyond conventional density functional theory (DFT), and calculated optical conductivity using relativist quasi-particle (GW) correction. Incorporating these many-body effects, we further solve Bethe-Salpeter equations (BSE) for excitons, and found enhanced optical conductivity near the gap edge. Due to the presence of organic methylammonium cations near the center of the perovskite cell, the system is sensitive to low energy vibrational modes. We estimate the phonon modes of CH3NH3PbI3 using small displacement approach, and further calculate the infrared absorption (IR) spectra. Qualitatively, our calculations of low-energy phonon frequencies are in good agreement with our terahertz measurements. Therefore, for both energy scales (around 2 eV and 0-20 meV), our calculations reveal the importance of many-body effects and their contributions to the desirable optical properties in the cubic organometallic perovskites system.
We present quasiparticle (QP) energies from fully self-consistent $GW$ (sc$GW$) calculations for a set of prototypical semiconductors and insulators within the framework of the projector-augmented wave methodology. To obtain converged results, both finite basis-set corrections and $k$-point corrections are included, and a simple procedure is suggested to deal with the singularity of the Coulomb kernel in the long-wavelength limit, the so called head correction. It is shown that the inclusion of the head corrections in the sc$GW$ calculations is critical to obtain accurate QP energies with a reasonable $k$-point set. We first validate our implementation by presenting detailed results for the selected case of diamond, and then we discuss the converged QP energies, in particular the band gaps, for a set of gapped compounds and compare them to single-shot $G_0W_0$, QP self-consistent $GW$, and previously available sc$GW$ results as well as experimental results.
We present a method to compute optical spectra and exciton binding energies of molecules and solids based on the solution of the Bethe-Salpeter equation (BSE) and the calculation of the screened Coulomb interaction in finite field. The method does not require the explicit evaluation of dielectric matrices nor of virtual electronic states, and can be easily applied without resorting to the random phase approximation. In addition it utilizes localized orbitals obtained from Bloch states using bisection techniques, thus greatly reducing the complexity of the calculation and enabling the efficient use of hybrid functionals to obtain single particle wavefunctions. We report exciton binding energies of several molecules and absorption spectra of condensed systems of unprecedented size, including water and ice samples with hundreds of atoms.
We present an approach to calculate the electronic structure for a range of materials using the quasiparticle self-consistent GW method with vertex corrections included in the screened Coulomb interaction W. This is achieved by solving the Bethe-Salpeter equation for the polarization matrix at all k-points in the Brillouin zone. We refer to this method as QSGW^. We show that including ladder diagrams in W can greatly reduce the band gap overestimation of RPA-based QSGW. The resultant discrepency of the calculated band gap in this method is then attributed mostly to the fact that electron-phonon contributions to W are neglected; which would allow one to then obtain an estimate for the size of this effect. We present results for a range of systems from simple sp semiconductors to the strongly correlated systems NiO and CoO. Results for systems where the RPA-based QSGW band gap is larger than expected are investigated, and an estimate for the Frolich contribution to the gap is included in a few polar compounds where QSGW can overestimate the gap by as much as 2 eV. The improvement over QSGW for the dielectric constants is also presented
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا