Do you want to publish a course? Click here

Levy walk with multiple internal states

146   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Levy walk is a fundamental model with applications ranging from quantum physics to paths of animal foraging. Taking animal foraging as an example, a natural idea that comes to ones mind is to introduce the multiple internal states for dealing with the dependence of the PDF of waiting time on the energy of the animal and richness of the food at a particular location, etc; the framework can also be used to model the moving trajectories of smart animals without returning to the directions or locations which they come from immediately. After building the Levy walk model with multiple internal states and deriving the governing equation of the distribution of the positions of the particles, some applications are discussed with specific transition matrices. The type of diffusion for non-immediately-repeating L{e}vy walk is uncovered, and the distribution and average of first passage time are numerically simulated.



rate research

Read More

368 - Pengbo Xu , Weihua Deng , 2019
Integral transform method (Fourier or Laplace transform, etc) is more often effective to do the theoretical analysis for the stochastic processes. However, for the time-space coupled cases, e.g., Levy walk or nonlinear cases, integral transform method may fail to be so strong or even do not work again. Here we provide Hermite polynomial expansion approach, being complementary to integral transform method. Some statistical observables of general Levy walks are calculated by the Hermite polynomial expansion approach, and the comparisons are made when both the integral transform method and the newly introduced approach work well.
Levy walks (LWs) are spatiotemporally coupled random-walk processes describing superdiffusive heat conduction in solids, propagation of light in disordered optical materials, motion of molecular motors in living cells, or motion of animals, humans, robots, and viruses. We here investigate a key feature of LWs, their response to an external harmonic potential. In this generic setting for confined motion we demonstrate that LWs equilibrate exponentially and may assume a bimodal stationary distribution. We also show that the stationary distribution has a horizontal slope next to a reflecting boundary placed at the origin, in contrast to correlated superdiffusive processes. Our results generalize LWs to confining forces and settle some long-standing puzzles around LWs.
Levy walks define a fundamental concept in random walk theory which allows one to model diffusive spreading that is faster than Brownian motion. They have many applications across different disciplines. However, so far the derivation of a diffusion equation for an n-dimensional correlated Levy walk remained elusive. Starting from a fractional Klein-Kramers equation here we use a moment method combined with a Cattaneo approximation to derive a fractional diffusion equation for superdiffusive short range auto-correlated Levy walks in the large time limit, and solve it. Our derivation discloses different dynamical mechanisms leading to correlated Levy walk diffusion in terms of quantities that can be measured experimentally.
We demonstrate the phenomenon of cumulative inertia in intracellular transport involving multiple motor proteins in human epithelial cells by measuring the empirical survival probability of cargoes on the microtubule and their detachment rates. We found the longer a cargo moves along a microtubule, the less likely it detaches from it. As a result, the movement of cargoes is non-Markovian and involves a memory. We observe memory effects on the scale of up to 2 seconds. We provide a theoretical link between the measured detachment rate and the super-diffusive Levy walk-like cargo movement.
A stochastic process with movement, return, and rest phases is considered in this paper. For the movement phase, the particles move following the dynamics of Gaussian process or ballistic type of Levy walk, and the time of each movement is random. For the return phase, the particles will move back to the origin with a constant velocity or acceleration or under the action of a harmonic force after each movement, so that this phase can also be treated as a non-instantaneous resetting. After each return, a rest with a random time at the origin follows. The asymptotic behaviors of the mean squared displacements with different kinds of movement dynamics, random resting time, and returning are discussed. The stationary distributions are also considered when the process is localized. Besides, the mean first passage time is considered when the dynamic of movement phase is Brownian motion.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا