Do you want to publish a course? Click here

The mass-size relation of LRGs from BOSS and DECaLS

77   0   0.0 ( 0 )
 Added by Ginevra Favole
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use the DECaLS DR3 survey photometry matched to the SDSS-III/BOSS DR12 spectroscopic catalog to investigate the morphology and stellar mass-size relation of luminous red galaxies (LRGs) within the CMASS and LOWZ galaxy samples in the redshift range $0.2<z<0.7$. The large majority of both samples is composed of early-type galaxies with De Vaucouleurs profiles, while only less than 20% are late-type exponentials. We calibrate DECaLS effective radii using the higher resolution CFHT/MegaCam observations and optimise the correction for each morphological type. By cross-matching the photometric properties of the early-type population with the Portsmouth stellar mass catalog, we are able to explore the high-mass end of the distribution using a large sample of 313,026 galaxies over 4380 deg$^{2}$. We find a clear correlation between the sizes and the stellar masses of these galaxies, which appears flatter than previous estimates at lower masses. The sizes of these early-type galaxies do not exhibit significant evolution within the BOSS redshift range, but a slightly declining redshift trend is found when these results are combined with $zsim0.1$ SDSS measurements at the high-mass end. The synergy between BOSS and DECaLS has important applications in other fields, including galaxy clustering and weak lensing.



rate research

Read More

We study the evolution of the luminosity-to-halo mass relation of Luminous Red Galaxies (LRGs). We select a sample of 52 000 LOWZ and CMASS LRGs from the Baryon Oscillation Spectroscopic Survey (BOSS) SDSS-DR10 in the ~450 deg^2 that overlaps with imaging data from the second Red-sequence Cluster Survey (RCS2), group them into bins of absolute magnitude and redshift and measure their weak lensing signals. The source redshift distribution has a median of 0.7, which allows us to study the lensing signal as a function of lens redshift. We interpret the lensing signal using a halo model, from which we obtain the halo masses as well as the normalisations of the mass-concentration relations. We find that the concentration of haloes that host LRGs is consistent with dark matter only simulations once we allow for miscentering or satellites in the modelling. The slope of the luminosity-to-halo mass relation has a typical value of 1.4 and does not change with redshift, but we do find evidence for a change in amplitude: the average halo mass of LOWZ galaxies increases by 25_{-14}^{+16} % between z=0.36 and 0.22 to an average value of 6.43+/-0.52 x 10^13 h70^-1 Msun. If we extend the redshift range using the CMASS galaxies and assume that they are the progenitors of the LOWZ sample, we find that the average mass of LRGs increases by 80^{+39}_{-28} % between z=0.6 and 0.2
We have obtained structural parameters of about 340,000 galaxies from the Kilo Degree Survey (KiDS) in 153 square degrees of data release 1, 2 and 3. We have performed a seeing convolved 2D single Sersic fit to the galaxy images in the 4 photometric bands (u, g, r, i) observed by KiDS, by selecting high signal-to-noise ratio (S/N > 50) systems in every bands. We have classified galaxies as spheroids and disc-dominated by combining their spectral energy distribution properties and their Sersic index. Using photometric redshifts derived from a machine learning technique, we have determined the evolution of the effective radius, Re and stellar mass, mst, versus redshift, for both mass complete samples of spheroids and disc-dominated galaxies up to z ~ 0.6. Our results show a significant evolution of the structural quantities at intermediate redshift for the massive spheroids ($mbox{Log} M_*/M_odot>11$, Chabrier IMF), while almost no evolution has found for less massive ones ($mbox{Log} M_*/M_odot < 11$). On the other hand, disc dominated systems show a milder evolution in the less massive systems ($mbox{Log} M_*/M_odot < 11$) and possibly no evolution of the more massive systems. These trends are generally consistent with predictions from hydrodynamical simulations and independent datasets out to redshift z ~ 0.6, although in some cases the scatter of the data is large to drive final conclusions. These results, based on 1/10 of the expected KiDS area, reinforce precedent finding based on smaller statistical samples and show the route toward more accurate results, expected with the the next survey releases.
A photometric redshift sample of Luminous Red Galaxies (hereafter LRGs) obtained from The DECam Legacy Survey (DECaLS) is analysed to probe cosmic distances by exploiting the wedge approach of the two-point correlation function. Although the cosmological information is highly contaminated by the uncertainties existing in the photometric redshifts from the galaxy map, an angular diameter distance can be probed at the perpendicular configuration in which the measured correlation function is minimally contaminated. An ensemble of wedged correlation functions selected up to a given threshold based on having the least contamination was studied in the previous work (arXiv:1903.09651v2 [astro-ph.CO]) using simulations, and the extracted cosmological information was unbiased within this threshold. We apply the same methodology for analysing the LRG sample from DECaLS which will provide the optical imaging for targeting two-thirds of the DESI footprint and measure the angular diameter distances at $z=0.69$ and $z=0.87$ to be $D_{A}(0.697)=(1499 pm 77,mathrm{Mpc})(r_{d}/r_{d,fid})$ and $D_{A}(0.874)=(1680 pm 109,mathrm{Mpc})(r_{d}/r_{d,fid})$ with a fractional error of 5.14% and 6.48% respectively. We obtain a value of $H_{0}=67.59pm5.52$ km/s/Mpc which supports the $H_0$ measured by all other BAO results and is consistent with $Lambda$CDM model.
The scatter in the galaxy size versus stellar mass (Mstar) relation gets largely reduced when, rather than the half-mass radius Re, the size at a fixed surface density is used. Here we address why this happens. We show how a reduction is to be expected because any two galaxies with the same Mstar have at least one radius with identical surface density, where the galaxies have identical size. However, the reason why the scatter is reduced to the observed level is not trivial, and we pin it down to the galaxy surface density profiles approximately following Sersic profiles with their Re and Sersic index (n) anti-correlated (i.e., given Mstar, n increases when Re decreases). Our analytical results describe very well the behavior of the observed galaxies as portrayed in the NASA Sloan Atlas (NSA), which contains more than half a million local objects with 7 < log(Mstar/Msun) < 11.5. The comparison with NSA galaxies also allows us to find the optimal values for the mass surface density (2.4m0.9p1.3 Msun/pc2) and surface brightness (r-band 24.7pm0.5 mag/arcsec2) that minimize the scatter, although the actual values depend somehow on the subset of NSA galaxies used for optimization. The physical reason for the existence of optimal values is unknown but, as Trujillo+20 point out, they are close to the gas surface density threshold to form stars and thus may trace the physical end of a galaxy. Our NSA-based size--mass relation agrees with theirs on the slope as well as on the magnitude of the scatter. As a by-product of the narrowness of the size--mass relation (only 0.06 dex), we propose to use the size of a galaxy to measure its stellar mass. In terms of observing time, it is not more demanding than the usual photometric techniques and may present practical advantages in particular cases.
Different studies have reported a power-law mass-size relation $M propto R^q$ for ensembles of molecular clouds. In the case of nearby clouds, the index of the power-law $q$ is close to 2. However, for clouds spread all over the Galaxy, indexes larger than 2 are reported. We show that indexes larger than 2 could be the result of line-of-sight superposition of emission that does not belong to the cloud itself. We found that a random factor of gas contamination, between 0.001% and 10% of the line-of-sight, allows to reproduce the mass-size relation with $q sim 2.2-2.3$ observed in Galactic CO surveys. Furthermore, for dense cores within a single cloud, or molecular clouds within a single galaxy, we argue that, even in these cases, there is observational and theoretical evidence that some degree of superposition may be occurring. However, additional effects may be present in each case, and are briefly discussed. We also argue that defining the fractal dimension of clouds via the mass-size relation is not adequate, since the mass is not {necessarily} a proxy to the area, and the size reported in $M-R$ relations is typically obtained from the square root of the area, rather than from an estimation of the size independent from the area. Finally, we argue that the statistical analysis of finding clouds satisfying the Larsons relations does not mean that each individual cloud is in virial equilibrium.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا