In this paper we investigate the completeness of the Stark resonant eigenstates for a particle in a square-well potential. We find that the resonant state expansions for target functions converge inside the potential well and that the existence of this convergence does not depend on the depth of the potential well. By analyzing the asymptotic form of the terms in these expansions we prove some results on the relation between smoothness of target functions and the rate of convergence of the corresponding resonant state expansion.