Do you want to publish a course? Click here

Hybrid systems for the generation of non-classical mechanical states via quadratic interactions

151   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a method to implement two-phonon interactions between mechanical resonators and spin qubits in hybrid setups, and show that these systems can be applied for the generation of nonclassical mechanical states even in the presence of dissipation. In particular, we demonstrate that the implementation of a two-phonon Jaynes-Cummings Hamiltonian under coherent driving of the qubit yields a dissipative phase transition with similarities to the one predicted in the model of the degenerate parametric oscillator: beyond a certain threshold in the driving amplitude, the driven-dissipative system sustains a mixed steady state consisting of a `jumping cat, i.e., a cat state undergoing random jumps between two phases. We consider realistic setups and show that, in samples within reach of current technology, the system features non-classical transient states, characterized by a negative Wigner function, that persist during timescales of fractions of a second.

rate research

Read More

Non-classical state generation is an important component throughout experimental quantum science for quantum information applications and probing the fundamentals of physics. Here, we investigate permutations of quantum non-demolition quadrature measurements and single quanta addition/subtraction to prepare quantum superposition states in bosonic systems. The performance of each permutation is quantified and compared using several different non-classicality criteria including Wigner negativity, non-classical depth, and optimal fidelity with a coherent state superposition. We also compare the performance of our protocol using squeezing instead of a quadrature measurement and find that the purification provided by the quadrature measurement can significantly increase the non-classicality generated. Our approach is ideally suited for implementation in light-matter systems such as quantum optomechanics and atomic spin ensembles, and offers considerable robustness to initial thermal occupation.
Quantum optics - the creation, manipulation and detection of non-classical states of light - is a fundamental cornerstone of modern physics, with many applications in basic and applied science. Achieving the same level of control over phonons, the quanta of vibrations, could have a similar impact, in particular on the fields of quantum sensing and quantum information processing. Here we demonstrate the first step towards this level of control and realize a single-mode waveguide for individual phonons in a suspended silicon micro-structure. We use a cavity-waveguide architecture, where the cavity is used as a source and detector for the mechanical excitations, while the waveguide has a free standing end in order to reflect the phonons. This enables us to observe multiple round-trips of the phonons between the source and the reflector. The long mechanical lifetime of almost 100 $mu s$ demonstrates the possibility of nearly lossless transmission of single phonons over, in principle, tens of centimeters. Our experiment represents the first demonstration of full on-chip control over traveling single phonons strongly confined in the directions transverse to the propagation axis and paves the way to a time-encoded multimode quantum memory at telecom wavelength and advanced quantum acoustics experiments.
We investigate the energy spectrum for hybrid mechanical systems described by non-parity-symmetric quantum Rabi models. A set of analytical solutions in terms of the confluent Heun functions and their analytical energy spectrum are obtained. The analytical energy spectrum includes regular and exceptional parts, which are both confirmed by direct numerical simulation. The regular part is determined by the zeros of the Wronskian for a pair of analytical solutions. The exceptional part is relevant to the isolated exact solutions and its energy eigenvalues are obtained by analyzing the truncation conditions for the confluent Heun functions. By analyzing the energy eigenvalues for exceptional points, we obtain the analytical conditions for the energy-level-crossings, which correspond to two-fold energy degeneracy.
Optomechanical systems typically use light to control the quantum state of a mechanical resonator. In this paper, we propose a scheme for controlling the quantum state of light using the mechanical degree of freedom as a controlled beam splitter. Preparing the mechanical resonator in non-classical states enables an optomechanical Stern-Gerlach interferometer. When the mechanical resonator has a small coherent amplitude it acts as a quantum control, entangling the optical and mechanical degrees of freedom. As the coherent amplitude of the resonator increases, we recover single photon and two-photon interference via a classically controlled beam splitter. The visibility of the two-photon interference is particularly sensitive to coherent excitations in the mechanical resonator and this could form the basis of an optically transduced weak-force sensor.
The generation of non-classical states of light via photon blockade with time-modulated input is analyzed. We show that improved single photon statistics can be obtained by adequately choosing the parameters of the driving laser pulses. An alternative method, where the system is driven via a continuous wave laser and the frequency of the dipole is controlled (e.g. electrically) at very fast timescales is presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا