Do you want to publish a course? Click here

All-optical Nanoscale Control of Photon Correlations: Dressed States Assisted Quantum Interference Effects

110   0   0.0 ( 0 )
 Added by Dongxing Zhao
 Publication date 2018
  fields Physics
and research's language is English
 Authors Dongxing Zhao




Ask ChatGPT about the research

We propose an all-optical scheme to control the photon statistics using hybrid quantum plasmonic system. With the aid of dressed states assisted quantum interference effects, it is shown that the photon correlations of a signal field can be continuously modulated from bunching to antibunching under the control of a pump field. Apart from the exact multimode model, a single-mode model and an analytical treatment are also provided to help us identify the roles of multimode coupling and quantum interference between probability amplitudes. The proposed scheme, in contrast to the cavity quantum electrodynamics methods, works well even in the bad cavity limit. These findings suggest that this composite system provides a feasible nanophotonic platform for active modulation of photon statistics and for future quantum devices.

rate research

Read More

The interaction of organic molecules and molecular aggregates with electromagnetic fields that are strongly confined inside optical cavities within nanoscale volumes, has allowed the observation of exotic quantum regimes of light-matter interaction at room temperature, for a wide variety of cavity materials and geometries. Understanding the universal features of such organic cavities represents a significant challenge for theoretical modelling, as experiments show that these systems are characterized by an intricate competition between coherent and dissipative processes involving entangled nuclear, electronic and photonic degrees of freedom. In this review, we discuss a new theoretical framework that can successfully describe organic cavities under strong light-matter coupling. The theory combines standard concepts in chemical physics and quantum optics to provide a microscopic description of vibronic organic polaritons that is fully consistent with available experiments, and yet is profoundly different from the common view of organic polaritons. We show that by introducing a new class of vibronic polariton wave functions with a photonic component that is dressed by intramolecular vibrations, the new theory can offer a consistent solution to some of the long-standing puzzles in the interpretation of organic cavity photoluminescence. Throughout this review, we confront the predictions of the model with spectroscopic observations, and describe the conditions under which the theory reduces to previous approaches. We finally discuss possible extensions of the theory to account for realistic complexities of organic cavities such spatial inhomogeneities and the multi-mode nature of confined electromagnetic fields.
We show that it is possible to generate a novel single-photon fringe pattern by using two spatially separated identical bi-photon sources. The fringes are similar to the ones observed in a Michelson interferometer and possess certain remarkable properties with potential applications. A striking feature of the fringes is that although the pattern is obtained by detecting only one photon of each photon pair, the fringes shift due to a change in the optical path traversed by the undetected photon. The fringe shift is characterized by a combination of wavelengths of both photons, which implies that the wavelength of a photon can be measured without detecting it. Furthermore, the visibility of the fringes diminishes as the correlation between the transverse momenta of twin photons decreases: visibility is unity for maximum momentum correlation and zero for no momentum correlation. We also show that the momentum correlation between the two photons of a pair can be determined from the single-photon interference pattern. We thus for the first time propose a method of measuring a two-photon correlation without coincidence or heralded detection.
102 - Shu-Hao Wu , Mayra Amezcua , 2019
We report theoretical studies of adiabatic population transfer using dressed spin states. Quantum optimal control using the algorithm of Chopped Random Basis (CRAB) has been implemented in a negatively charged diamond nitrogen vacancy center that is coupled to a strong and resonant microwave field. We show that the dressed spin states are highly effective in suppressing effects of spin dephasing on adiabatic population transfer. The numerical simulation also demonstrates that CRAB-based quantum optimal control can enable an efficient and robust adiabatic population transfer.
Quantum discord quantifies non-classical correlations in a quantum system including those not captured by entanglement. Thus, only states with zero discord exhibit strictly classical correlations. We prove that these states are negligible in the whole Hilbert space: typically a state picked out at random has positive discord; and, given a state with zero discord, a generic arbitrarily small perturbation drives it to a positive-discord state. These results hold for any Hilbert-space dimension, and have direct implications on quantum computation and on the foundations of the theory of open systems. In addition, we provide a simple necessary criterion for zero quantum discord. Finally, we show that, for almost all positive-discord states, an arbitrary Markovian evolution cannot lead to a sudden, permanent vanishing of discord.
We study a system made up of one or two two-level quantum emitters, coupled to a single transverse mode of a closed waveguide, in which photon wavenumbers and frequencies are discretized, and characterize the stable states in which one excitation is steadily shared between the field and the emitters. We unearth finite-size effects in the field-emitter interactions and identify a family of dressed states, that represent the forerunners of bound states in the continuum in the limit of an infinite waveguide. We finally consider the potential interest of such states for applications in the field of quantum information.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا