Do you want to publish a course? Click here

Spin-isomer conversion of water at room temperature, and quantum-rotor-induced nuclear polarization, in the water-endofullerene H$_2$O@C$_{60}$

63   0   0.0 ( 0 )
 Added by Benno Meier
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Water exists in two forms, para and ortho, that have nuclear spin states with different symmetries. Here we report the conversion of fullerene-encapsulated para-water to ortho-water. The enrichment of para-water at low temperatures is monitored via changes in the electrical polarizability of the material. Upon rapid dissolution of the material in toluene the excess para-water converts to ortho- water. In H$_2{}^{16}$O@C$_{60}$ the conversion leads to a slow increase in the NMR signal. In H$_2{}^{16}$O@C$_{60}$ the conversion gives rise to weak signal enhancements attributed to quantum-rotor-induced nuclear spin polarization. The time constants for the spin-isomer conversion of fullerene-encapsulated water in ambient temperature solution are estimated as 30$pm$4 s for the $^{16}$O-isotopologue of water, and 16$pm$3 s for the $^{17}$O isotopologue.



rate research

Read More

170 - A. Shugai , U. Nagel , Y. Murata 2021
Infrared absorption spectroscopy study of endohedral water molecule in a solid mixture of H$_2$O@C$_{60}$ and C$_{60}$ was carried out at liquid helium temperature. From the evolution of the spectra during the ortho-para conversion process, the spectral lines were identified as para- and ortho-water transitions. Eight vibrational transitions with rotational side peaks were observed in the mid-infrared: $omega_1$, $omega_2$, $omega_3$, $2omega_1$, $2omega_2$, $omega_1 +omega_3$, $omega_2 +omega_3$, and $2omega_2+omega_3$. The vibrational frequencies $omega_2$ and 2$omega_2$ are lower by 1.6% and the rest by 2.4%, as compared to free water/. A model consisting of a rovibrational Hamiltonian with the dipole and quadrupole moments of water interacting with the crystal field was used to fit the infrared absorption spectra. The electric quadrupole interaction with the crystal field lifts the degeneracy of the rotational levels. The finite amplitudes of the pure $v_1$ and $v_2$ vibrational transitions are consistent with the interaction of the water molecule dipole moment with a lattice-induced electric field. The permanent dipole moment of encapsulated water/ is found to be $0.5pm 0.1$ D as determined from the far-infrared rotational line intensities. The translational mode of the quantized center of mass motion of water/ in the molecular cage of C$_{60}$ was observed at 110cm$^{-1}$ (13.6meV).
Recent reports on the production of hydrogen peroxide (H$_2$O$_2$) on the surface of condensed water microdroplets without the addition of catalysts or additives have sparked significant interest. The underlying mechanism is speculated to be ultrahigh electric fields at the air-water interface; smaller droplets present higher interfacial area and produce higher (detectable) H$_2$O$_2$ yields. Herein, we present an alternative explanation for these experimental observations. We compare H$_2$O$_2$ production in water microdroplets condensed from vapor produced via (i) heating water to 50-70 {deg}C and (ii) ultrasonic humidification (as exploited in the original report). Water microdroplets condensed after heating do not show any enhancement in the H$_2$O$_2$ level in comparison to the bulk water, regardless of droplet size or the substrate wettability. In contrast, those condensed after ultrasonic humidification produce significantly higher H$_2$O$_2$ quantities. We conclude that the ultrasonication of water contributes to the H$_2$O$_2$ production, not droplet interfacial effects.
An inhomogeneous electric field is used to study the deflection of a supersonic beam of water molecules. The deflection profiles show strong broadening accompanied by a small net displacement towards higher electric fields. The profiles are in excellent agreement with a calculation of rotational Stark shifts. The molecular rotational temperature being the only adjustable parameter, beam deflection is found to offer an accurate and practical means of determining this quantity. A pair of especially strongly responding rotational sublevels, adding up to approx 25% of the total beam intensity, are readily separated by deflection, making them potentially useful for further electrostatic manipulation.
Second-Harmonic Scatteringh (SHS) experiments provide a unique approach to probe non-centrosymmetric environments in aqueous media, from bulk solutions to interfaces, living cells and tissue. A central assumption made in analyzing SHS experiments is that the each molecule scatters light according to a constant molecular hyperpolarizability tensor $boldsymbol{beta}^{(2)}$. Here, we investigate the dependence of the molecular hyperpolarizability of water on its environment and internal geometric distortions, in order to test the hypothesis of constant $boldsymbol{beta}^{(2)}$. We use quantum chemistry calculations of the hyperpolarizability of a molecule embedded in point-charge environments obtained from simulations of bulk water. We demonstrate that both the heterogeneity of the solvent configurations and the quantum mechanical fluctuations of the molecular geometry introduce large variations in the non-linear optical response of water. This finding has the potential to change the way SHS experiments are interpreted: in particular, isotopic differences between H$_2$O and D$_2$O could explain recent second-harmonic scattering observations. Finally, we show that a simple machine-learning framework can predict accurately the fluctuations of the molecular hyperpolarizability. This model accounts for the microscopic inhomogeneity of the solvent and represents a first step towards quantitative modelling of SHS experiments.
We demonstrate the accuracy and efficiency of a recently introduced approach to account for nuclear quantum effects (NQE) in molecular simulations: the adaptive Quantum Thermal Bath (adQTB). In this method, zero point energy is introduced through a generalized Langevin thermostat designed to precisely enforce the quantum fluctuation-dissipation theorem. We propose a refined adQTB algorithm with improved accuracy and we report adQTB simulations of liquid water. Through extensive comparison with reference path integral calculations, we demonstrate that it provides excellent accuracy for a broad range of structural and thermodynamic observables as well as infrared vibrational spectra. The adQTB has a computational cost comparable to classical molecular dynamics, enabling simulations of up to millions of degrees of freedom.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا