Do you want to publish a course? Click here

A tunable Josephson platform to explore many-body quantum optics in circuit-QED

101   0   0.0 ( 0 )
 Added by Serge Florens
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Coupling an isolated emitter to a single mode of the electromagnetic field is now routinely achieved and well understood. Current efforts aim to explore the coherent dynamics of emitters coupled to several electromagnetic modes (EM). freedom. Recently, ultrastrong coupling to a transmission line has been achieved where the emitter resonance broadens to a significant fraction of its frequency. In this work we gain significantly improved control over this regime. We do so by combining the simplicity of a transmon qubit and a bespoke EM environment with a high density of discrete modes, hosted inside a superconducting metamaterial. This produces a unique device in which the hybridisation between the qubit and up to 10 environmental modes can be monitored directly. Moreover the frequency and broadening of the qubit resonance can be tuned independently of each other in situ. We experimentally demonstrate that our device combines this tunability with ultrastrong coupling and a qubit nonlinearity comparable to the other relevant energy scales in the system. We also develop a quantitative theoretical description that does not contain any phenomenological parameters and that accurately takes into account vacuum fluctuations of our large scale quantum circuit in the regime of ultrastrong coupling and intermediate non-linearity. The demonstration of this new platform combined with a quantitative modelling brings closer the prospect of experimentally studying many-body effects in quantum optics. A limitation of the current device is the intermediate nonlinearity of the qubit. Pushing it further will induce fully developed many-body effects, such as a giant Lamb shift or nonclassical states of multimode optical fields. Observing such effects would establish interesting links between quantum optics and the physics of quantum impurities.



rate research

Read More

Quantum optical photodetection has occupied a central role in understanding radiation-matter interactions. It has also contributed to the development of atomic physics and quantum optics, including applications to metrology, spectroscopy, and quantum information processing. The quantum microwave regime, originally explored using cavities and atoms, is seeing a novel boost with the generation of nonclassical propagating fields in circuit quantum electrodynamics (QED). This promising field, involving potential developments in quantum information with microwave photons, suffers from the absence of photodetectors. Here, we design a metamaterial composed of discrete superconducting elements that implements a high-efficiency microwave photon detector. Our design consists of a microwave guide coupled to an array of metastable quantum circuits, whose internal states are irreversibly changed due to the absorption of photons. This proposal can be widely applied to different physical systems and can be generalized to implement a microwave photon counter.
We propose a topological qubit in which braiding and readout are mediated by the $4pi$ Majorana-Josephson effect. The braidonium device consists of three Majorana nanowires that come together to make a tri-junction; in order to control the superconducting phase differences at the tri-junction the nanowires are enclosed in a ring made of a conventional superconductor; and in order to perform initialization/readout one of the nanowires is coupled to a fluxonium qubit through a topological Josephson junction. We analyze how flux-based control and readout protocols can be used to demonstrate braiding and qubit operation for realistic materials and circuit parameters.
By coupling a superconducting weak link to a microwave resonator, recent experiments probed the spectrum and achieved the quantum manipulation of Andreev states in various systems. However, the quantitative understanding of the response of the resonator to changes in the occupancy of the Andreev levels, which are of fermionic nature, is missing. Here, using Bogoliubov-de Gennes formalism to describe the weak link and a general formulation of the coupling to the resonator, we calculate the shift of the resonator frequency as a function of the levels occupancy and describe how transitions are induced by phase or electric field microwave drives. We apply this formalism to analyze recent experimental results obtained using circuit-QED techniques on superconducting atomic contacts and semiconducting nanowire Josephson junctions.
We have performed spectroscopic measurements of a superconducting qubit dispersively coupled to a nonlinear resonator driven by a pump microwave field. Measurements of the qubit frequency shift provide a sensitive probe of the intracavity field, yielding a precise characterization of the resonator nonlinearity. The qubit linewidth has a complex dependence on the pump frequency and amplitude, which is correlated with the gain of the nonlinear resonator operated as a small-signal amplifier. The corresponding dephasing rate is found to be close to the quantum limit in the low-gain limit of the amplifier.
We analyze a two qubit parity measurement based on dispersive read-out in circuit quantum electrodynamics. The back-action on the qubits has two qualitatively different contributions. One is an unavoidable dephasing in one of the parity subspaces, arising during the transient time of switching on the measurement. The other part is a stochastic rotation of the phase in the same subspace, which persists during the whole measurement. The latter can be determined from the full measurement record, using the method of state estimation. Our main result is that the outcome of this phase determination process is {em independent} of the initial state in the state estimation procedure. The procedure can thus be used in a measurement situation, where the initial state is unknown. We discuss how this feed-back method can be used to achieve a high fidelity parity measurement for realistic values of the cavity-qubit coupling strength. Finally, we discuss the robustness of the feed-back procedure towards errors in the measurement record.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا