Do you want to publish a course? Click here

Phase diagram of the quantum Ising model with long-range interactions on an infinite-cylinder triangular lattice

93   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Obtaining quantitative ground-state behavior for geometrically-frustrated quantum magnets with long-range interactions is challenging for numerical methods. Here, we demonstrate that the ground states of these systems on two-dimensional lattices can be efficiently obtained using state-of-the-art translation-invariant variants of matrix product states and density-matrix renormalization-group algorithms. We use these methods to calculate the fully-quantitative ground-state phase diagram of the long-range interacting triangular Ising model with a transverse field on 6-leg infinite-length cylinders, and scrutinize the properties of the detected phases. We compare these results with those of the corresponding nearest neighbor model. Our results suggest that, for such long-range Hamiltonians, the long-range quantum fluctuations always lead to long-range correlations, where correlators exhibit power-law decays instead of the conventional exponential drops observed for short-range correlated gapped phases. Our results are relevant for comparisons with recent ion-trap quantum simulator experiments that demonstrate highly-controllable long-range spin couplings for several hundred ions.



rate research

Read More

59 - J. Koziol , S. Fey , S.C. Kapfer 2019
To gain a better understanding of the interplay between frustrated long-range interactions and zero-temperature quantum fluctuations, we investigate the ground-state phase diagram of the transverse-field Ising model with algebraically-decaying long-range Ising interactions on quasi one-dimensional infinite-cylinder triangular lattices. Technically, we apply various approaches including low- and high-field series expansions. For the classical long-range Ising model, we investigate cylinders with an arbitrary even circumference. We show the occurrence of gapped stripe-ordered phases emerging out of the infinitely-degenerate nearest-neighbor Ising ground-state space on the two-dimensional triangular lattice. Further, while cylinders with circumferences $6$, $10$, $14$ et cetera are always in the same stripe phase for any decay exponent of the long-range Ising interaction, the family of cylinders with circumferences $4$, $8$, $12$ et cetera displays a phase transition between two different types of stripe structures. For the full long-range transverse-field Ising model, we concentrate on cylinders with circumference four and six. The ground-state phase diagram consists of several quantum phases in both cases including an $x$-polarized phase, stripe-ordered phases, and clock-ordered phases which emerge from an order-by-disorder scenario already present in the nearest-neighbor model. In addition, the generic presence of a potential intermediate gapless phase with algebraic correlations and associated Kosterlitz-Thouless transitions is discussed for both cylinders.
117 - Qiang Luo , Shijie Hu , Bin Xi 2017
Motivated by the recent experiment on a rare-earth material YbMgGaO$_4$ [Y. Li textit{et al.}, Phys. Rev. Lett. textbf{115}, 167203 (2015)], which found that the ground state of YbMgGaO$_4$ is a quantum spin liquid, we study the ground-state phase diagram of an anisotropic spin-$1/2$ model that was proposed to describe YbMgGaO$_4$. Using the density-matrix renormalization group method in combination with the exact diagonalization, we calculate a variety of physical quantities, including the ground-state energy, the fidelity, the entanglement entropy and spin-spin correlation functions. Our studies show that in the quantum phase diagram there is a $120^{circ}$ phase and two distinct stripe phases. The transitions from the two stripe phases to the $120^{circ}$ phase are of the first order. However, the transition between the two stripe phases is not the first order, which is different from its classical counterpart. Additionally, we find no evidence for a quantum spin liquid in this model. Our results suggest that additional terms may be also important to model the material YbMgGaO$_4$. These findings will stimulate further experimental and theoretical works in understanding the quantum spin liquid ground state in YbMgGaO$_4$.
We introduce a quantum dimer model on the hexagonal lattice that, in addition to the standard three-dimer kinetic and potential terms, includes a competing potential part counting dimer-free hexagons. The zero-temperature phase diagram is studied by means of quantum Monte Carlo simulations, supplemented by variational arguments. It reveals some new crystalline phases and a cascade of transitions with rapidly changing flux (tilt in the height language). We analyze perturbatively the vicinity of the Rokhsar-Kivelson point, showing that this model has the microscopic ingredients needed for the devils staircase scenario [E. Fradkin et al., Phys. Rev. B 69, 224415 (2004)], and is therefore expected to produce fractal variations of the ground-state flux.
We study the phase diagram of the frustrated Heisenberg model on the triangular lattice with nearest and next-nearest neighbor spin exchange coupling, on 3-leg ladders. Using the density-matrix renormalization-group method, we obtain the complete phase diagram of the model, which includes quasi-long-range $120^circ$ and columnar order, and a Majumdar-Ghosh phase with short-ranged correlations. All these phases are non-chiral and planar. We also identify the nature of phase transitions.
96 - J. Chen , W. Z. Zhuo , M. H. Qin 2016
In this work, we study the magnetization behaviors of the classical Ising model on the triangular lattice using Monte Carlo simulations, and pay particular attention to the effect of further-neighbor interactions. Several fascinating spin states are identified to be stabilized in certain magnetic field regions, respectively, resulting in the magnetization plateaus at 2/3, 5/7, 7/9 and 5/6 of the saturation magnetization MS, in addition to the well known plateaus at 0, 1/3 and 1/2 of MS. The stabilization of these interesting orders can be understood as the consequence of the competition between Zeeman energy and exchange energy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا