Do you want to publish a course? Click here

A Unified Deep Learning Architecture for Abuse Detection

419   0   0.0 ( 0 )
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Hate speech, offensive language, sexism, racism and other types of abusive behavior have become a common phenomenon in many online social media platforms. In recent years, such diverse abusive behaviors have been manifesting with increased frequency and levels of intensity. This is due to the openness and willingness of popular media platforms, such as Twitter and Facebook, to host content of sensitive or controversial topics. However, these platforms have not adequately addressed the problem of online abusive behavior, and their responsiveness to the effective detection and blocking of such inappropriate behavior remains limited. In the present paper, we study this complex problem by following a more holistic approach, which considers the various aspects of abusive behavior. To make the approach tangible, we focus on Twitter data and analyze user and textual properties from different angles of abusive posting behavior. We propose a deep learning architecture, which utilizes a wide variety of available metadata, and combines it with automatically-extracted hidden patterns within the text of the tweets, to detect multiple abusive behavioral norms which are highly inter-related. We apply this unified architecture in a seamless, transparent fashion to detect different types of abusive behavior (hate speech, sexism vs. racism, bullying, sarcasm, etc.) without the need for any tuning of the model architecture for each task. We test the proposed approach with multiple datasets addressing different and multiple abusive behaviors on Twitter. Our results demonstrate that it largely outperforms the state-of-art methods (between 21 and 45% improvement in AUC, depending on the dataset).



rate research

Read More

Image aesthetics has become an important criterion for visual content curation on social media sites and media content repositories. Previous work on aesthetic prediction models in the computer vision community has focused on aesthetic score prediction or binary image labeling. However, raw aesthetic annotations are in the form of score histograms and provide richer and more precise information than binary labels or mean scores. Consequently, in this work we focus on the rarely-studied problem of predicting aesthetic score distributions and propose a novel architecture and training procedure for our model. Our model achieves state-of-the-art results on the standard AVA large-scale benchmark dataset for three tasks: (i) aesthetic quality classification; (ii) aesthetic score regression; and (iii) aesthetic score distribution prediction, all while using one model trained only for the distribution prediction task. We also introduce a method to modify an image such that its predicted aesthetics changes, and use this modification to gain insight into our model.
As the problem of drug abuse intensifies in the U.S., many studies that primarily utilize social media data, such as postings on Twitter, to study drug abuse-related activities use machine learning as a powerful tool for text classification and filtering. However, given the wide range of topics of Twitter users, tweets related to drug abuse are rare in most of the datasets. This imbalanced data remains a major issue in building effective tweet classifiers, and is especially obvious for studies that include abuse-related slang terms. In this study, we approach this problem by designing an ensemble deep learning model that leverages both word-level and character-level features to classify abuse-related tweets. Experiments are reported on a Twitter dataset, where we can configure the percentages of the two classes (abuse vs. non abuse) to simulate the data imbalance with different amplitudes. Results show that our ensemble deep learning models exhibit better performance than ensembles of traditional machine learning models, especially on heavily imbalanced datasets.
In this paper, we consider using deep neural network for OFDM symbol detection and demonstrate its performance advantages in combating large Doppler Shift. In particular, a new architecture named Cascade-Net is proposed for detection, where deep neural network is cascading with a zero-forcing preprocessor to prevent the network stucking in a saddle point or a local minimum point. In addition, we propose a sliding detection approach in order to detect OFDM symbols with large number of subcarriers. We evaluate this new architecture, as well as the sliding algorithm, using the Rayleigh channel with large Doppler spread, which could degrade detection performance in an OFDM system and is especially severe for high frequency band and mmWave communications. The numerical results of OFDM detection in SISO scenario show that cascade-net can achieve better performance than zero-forcing method while providing robustness against ill conditioned channels. We also show the better performance of the sliding cascade network (SCN) compared to sliding zero-forcing detector through numerical simulation.
Online abusive language detection (ALD) has become a societal issue of increasing importance in recent years. Several previous works in online ALD focused on solving a single abusive language problem in a single domain, like Twitter, and have not been successfully transferable to the general ALD task or domain. In this paper, we introduce a new generic ALD framework, MACAS, which is capable of addressing several types of ALD tasks across different domains. Our generic framework covers multi-aspect abusive language embeddings that represent the target and content aspects of abusive language and applies a textual graph embedding that analyses the users linguistic behaviour. Then, we propose and use the cross-attention gate flow mechanism to embrace multiple aspects of abusive language. Quantitative and qualitative evaluation results show that our ALD algorithm rivals or exceeds the six state-of-the-art ALD algorithms across seven ALD datasets covering multiple aspects of abusive language and different online community domains.
Building an end-to-end conversational agent for multi-domain task-oriented dialogues has been an open challenge for two main reasons. First, tracking dialogue states of multiple domains is non-trivial as the dialogue agent must obtain complete states from all relevant domains, some of which might have shared slots among domains as well as unique slots specifically for one domain only. Second, the dialogue agent must also process various types of information across domains, including dialogue context, dialogue states, and database, to generate natural responses to users. Unlike the existing approaches that are often designed to train each module separately, we propose UniConv -- a novel unified neural architecture for end-to-end conversational systems in multi-domain task-oriented dialogues, which is designed to jointly train (i) a Bi-level State Tracker which tracks dialogue states by learning signals at both slot and domain level independently, and (ii) a Joint Dialogue Act and Response Generator which incorporates information from various input components and models dialogue acts and target responses simultaneously. We conduct comprehensive experiments in dialogue state tracking, context-to-text, and end-to-end settings on the MultiWOZ2.1 benchmark, achieving superior performance over competitive baselines.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا