Usually, the hyperparallel quantum computation can speed up quantum computing, reduce the quantum resource consumed largely, resist to noise, and simplify the storage of quantum information. Here, we present the first scheme for the self-error-corrected hyperparallel photonic quantum computation working with both the polarization and the spatial-mode degrees of freedom of photon systems simultaneously. It can prevent bit-flip errors from happening with an imperfect nonlinear interaction in the nearly realistic condition. We give the way to design the universal hyperparallel photonic quantum controlled-NOT (CNOT) gate on a two-photon system, resorting to the nonlinear interaction between the circularly polarized photon and the electron spin in the quantum dot in a double-sided microcavity system, by taking the imperfect interaction in the nearly realistic condition into account. Its self-error-corrected pattern prevents the bit-flip errors from happening in the hyperparallel quantum CNOT gate, guarantees the robust fidelity, and relaxes the requirement for its experiment. Meanwhile, this scheme works in a failure-heralded way. Also, we generalize this approach to achieve the self-error-corrected hyperparallel quantum CNOT$^N$ gate working on a multiple-photon system. These good features make this scheme more useful in the photonic quantum computation and quantum communication in the future.