No Arabic abstract
We have explored the thermodynamics of compressed magnetized plasmas in laboratory experiments and we call these studies magnetothermodynamics. The experiments are carried out in the Swarthmore Spheromak eXperiment device. In this device, a magnetized plasma source is located at one end and at the other end, a closed conducting can is installed. We generate parcels of magnetized plasma and observe their compression against the end wall of the conducting cylinder. The plasma parameters such as plasma density, temperature, and magnetic field are measured during compression using HeNe laser interferometry, ion Doppler spectroscopy and a linear $dot{B}$ probe array, respectively. To identify the instances of ion heating during compression, a PV diagram is constructed using measured density, temperature, and a proxy for the volume of the magnetized plasma. Different equations of state are analyzed to evaluate the adiabatic nature of the compressed plasma. A 3D resistive magnetohydrodynamic code (NIMROD) is employed to simulate the twisted Taylor states and show stagnation against the end wall of the closed conducting can. The simulation results are consistent to what we observe in our experiments.
We report the first measurements of equations of state of a fully relaxed magnetohydrodynamic (MHD) laboratory plasma. Parcels of magnetized plasma, called Taylor states, are formed in a coaxial magnetized plasma gun, and are allowed to relax and drift into a closed flux conserving volume. Density, ion temperature, and magnetic field are measured as a function of time as the Taylor states compress and heat. The theoretically predicted MHD and double adiabatic equations of state are compared to experimental measurements. We find that the MHD equation of state is inconsistent with our data.
Magnetothermodynamics (MTD) is the study of compression and expansion of magnetized plasma with an eye towards identifying equations of state for magneto-inertial fusion experiments. We present recent results from SSX experiments on the thermodynamics of compressed magnetized plasmas. In these experiments, we generate twisted flux ropes of magnetized, relaxed plasma accelerated from one end of a $1.5~m$ long copper flux conserver, and observe their compression in a closed conducting boundary installed at the other end. Plasma parameters are measured during compression. The instances of ion heating during compression are identified by constructing a PV diagram using measured density, temperature, and volume of the magnetized plasma. The theoretically predicted MHD and double adiabatic (CGL) equations of state are compared to experimental measurements to estimate the adiabatic nature of the compressed plasma. Since our magnetized plasmas relax to an equilibrium described by magnetohydrodynamics, one might expect their thermodynamics to be governed by the corresponding equation of state. However, we find that the magnetohydrodynamic equation of state is not supported by our data. Our results are more consistent with the parallel CGL equation of state suggesting that these weakly collisional plasmas have most of their proton energy in the direction parallel to the magnetic field.
Using direct numerical simulations of three-dimensional magnetohydrodynamic (MHD) turbulence the spatio-temporal behavior of magnetic field fluctuations is analyzed. Cases with relatively small, medium and large values of a mean background magnetic field are considered. The (wavenumber) scale dependent time correlation function is directly computed for different simulations, varying the mean magnetic field value. From this correlation function the time decorrelation is computed and compared with different theoretical times, namely, the local non-linear time, the random sweeping time, and the Alfvenic time, the latter being a wave effect. It is observed that time decorrelations are dominated by sweeping effects, and only at large values of the mean magnetic field and for wave vectors mainly aligned with this field time decorrelations are controlled by Alfvenic effects.
We investigate the nonlinear propagation of multidimensional magnetosonic shock waves (MSWs) in a dissipative quantum magnetoplasma. A macroscopic quantum magnetohydrodynamic (QMHD) model is used to include the quantum force associated with the Bohm potential, the pressure-like spin force, the exchange and correlation force of electrons, as well as the dissipative force due to the kinematic viscosity of ions and the magnetic diffusivity. The effects of these forces on the properties of arbitrary amplitude MSWs are examined numerically. It is found that the contribution from the exchange-correlation force appears to be dominant over those from the pressure gradient and the other similar quantum forces, and it results into a transition from monotonic to oscillatory shocks in presence of either the ion kinematic viscosity or the magnetic diffusivity.
The ball pen probe (BPP) technique is used successfully to make profile measurements of plasma potential, electron temperature and radial electric field on the Mega Amp Spherical Tokamak (MAST). The potential profile measured by the BPP is shown to significantly differ from the floating potential both in polarity and profile shape. By combining the BPP potential and the floating potential the electron temperature can be measured, which is compared with the Thomson scattering (TS) diagnostic. Excellent agreement between the two diagnostics is obtained when secondary electron emission is accounted for in the floating potential. From the BPP profile an estimate of the radial electric field is extracted which is shown to be of the order ~1kV/m and increases with plasma current. Corrections to the BPP measurement, constrained by the TS comparison, introduce uncertainty into the ER measurements. The uncertainty is most significant in the electric field well inside the separatrix. The electric field is used to estimate toroidal and poloidal rotation velocities from ExB motion. This paper further demonstrates the ability of the ball pen probe to make valuable and important measurements in the boundary plasma of a tokamak.