Coupled magnetic and ferroelectric states in the distorted honeycomb system Fe$_{4}$Ta$_{2}$O$_{9}$


Abstract in English

We report on the magnetic, thermodynamic, dielectric, and pyroelectric measurements on the hitherto unreported Fe${_4}$Ta${_2}$O${_9}$. This system is seen to exhibit a series of magnetic transitions, many of which are coupled to the emergence of ferroelectric order, making Fe${_4}$Ta${_2}$O${_9}$ the only genuine multiferroic in its material class. We suggest that the observed properties arise as a consequence of an effective reduction in the dimensionality of the magnetic lattice, with the magnetically active Fe${^{2+}}$ ions preferentially occupying a quasi 2D buckled honeycomb structure. The low temperature $H$-$T$ phase diagram of Fe${_4}$Ta${_2}$O${_9}$ reveals a rich variety of coupled magnetic and ferroelectric phases, in similarity with that observed in the distorted Kagome systems.

Download