Do you want to publish a course? Click here

Volume and Topological Invariants of Quantum Many-body Systems

61   0   0.0 ( 0 )
 Added by Xiao-Gang Wen
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

A gapped many-body system is described by path integral on a space-time lattice $C^{d+1}$, which gives rise to a partition function $Z(C^{d+1})$ if $partial C^{d+1} =emptyset$, and gives rise to a vector $|Psirangle$ on the boundary of space-time if $partial C^{d+1} eqemptyset$. We show that $V = text{log} sqrt{langlePsi|Psirangle}$ satisfies the inclusion-exclusion property $frac{V(Acup B)+V(Acap B)}{V(A)+V(B)}=1$ and behaves like a volume of the space-time lattice $C^{d+1}$ in large lattice limit (i.e. thermodynamics limit). This leads to a proposal that the vector $|Psirangle$ is the quantum-volume of the space-time lattice $C^{d+1}$. The inclusion-exclusion property does not apply to quantum-volume since it is a vector. But quantum-volume satisfies a quantum additive property. The violation of the inclusion-exclusion property by $V = text{log} sqrt{langlePsi|Psirangle}$ in the subleading term of thermodynamics limit gives rise to topological invariants that characterize the topological order in the system. This is a systematic way to construct and compute topological invariants from a generic path integral. For example, we show how to use non-universal partition functions $Z(C^{2+1})$ on several related space-time lattices $C^{2+1}$ to extract $(M_f)_{11}$ and $text{Tr}(M_f)$, where $M_f$ is a representation of the modular group $SL(2,mathbb{Z})$ -- a topological invariant that almost fully characterizes the 2+1D topological orders.



rate research

Read More

We propose the definitions of many-body topological invariants to detect symmetry-protected topological phases protected by point group symmetry, using partial point group transformations on a given short-range entangled quantum ground state. Partial point group transformations $g_D$ are defined by point group transformations restricted to a spatial subregion $D$, which is closed under the point group transformations and sufficiently larger than the bulk correlation length $xi$. By analytical and numerical calculations,we find that the ground state expectation value of the partial point group transformations behaves generically as $langle GS | g_D | GS rangle sim exp Big[ i theta+ gamma - alpha frac{{rm Area}(partial D)}{xi^{d-1}} Big]$. Here, ${rm Area}(partial D)$ is the area of the boundary of the subregion $D$, and $alpha$ is a dimensionless constant. The complex phase of the expectation value $theta$ is quantized and serves as the topological invariant, and $gamma$ is a scale-independent topological contribution to the amplitude. The examples we consider include the $mathbb{Z}_8$ and $mathbb{Z}_{16}$ invariants of topological superconductors protected by inversion symmetry in $(1+1)$ and $(3+1)$ dimensions, respectively, and the lens space topological invariants in $(2+1)$-dimensional fermionic topological phases. Connections to topological quantum field theories and cobordism classification of symmetry-protected topological phases are discussed.
We present a fully many-body formulation of topological invariants for various topological phases of fermions protected by antiunitary symmetry, which does not refer to single particle wave functions. For example, we construct the many-body $mathbb{Z}_2$ topological invariant for time-reversal symmetric topological insulators in two spatial dimensions, which is a many-body counterpart of the Kane-Mele $mathbb{Z}_2$ invariant written in terms of single-particle Bloch wave functions. We show that an important ingredient for the construction of the many-body topological invariants is a fermionic partial transpose which is basically the standard partial transpose equipped with a sign structure to account for anti-commuting property of fermion operators. We also report some basic results on various kinds of pin structures -- a key concept behind our strategy for constructing many-body topological invariants -- such as the obstructions, isomorphism classes, and Dirac quantization conditions.
We discuss how strongly interacting higher-order symmetry protected topological (HOSPT) phases can be characterized from the entanglement perspective: First, we introduce a topological many-body invariant which reveals the non-commutative algebra between flux operator and $C_n$ rotations. We argue that this invariant denotes the angular momentum carried by the instanton which is closely related to the discrete Wen-Zee response and fractional corner charge. Second, we define a new entanglement property, dubbed `higher-order entanglement, to scrutinize and differentiate various higher-order topological phases from a hierarchical sequence of the entanglement structure. We support our claims by numerically studying a super-lattice Bose-Hubbard model that exhibits different HOSPT phases.
We present a software package DiracQ, for use in quantum many-body Physics. It is designed for helping with typical algebraic manipulations that arise in quantum Condensed Matter Physics and Nuclear Physics problems, and also in some subareas of Chemistry. DiracQ is invoked within a Mathematica session, and extends the symbolic capabilities of Mathematica by building in standard commutation and anticommutation rules for several objects relevant in many-body Physics. It enables the user to carry out computations such as evaluating the commutators of arbitrary combinations of spin, Bose and Fermi operators defined on a discrete lattice, or the position and momentum operators in the continuum. Some examples from popular systems, such as the Hubbard model, are provided to illustrate the capabilities of the package.
69 - Jun Ho Son , Jason Alicea 2019
Inspired by a recently constructed commuting-projector Hamiltonian for a two-dimensional (2D) time-reversal-invariant topological superconductor [Wang et al., Phys. Rev. B 98, 094502 (2018)], we introduce a commuting-projector model that describes an interacting yet exactly solvable 2D topological insulator. We explicitly show that both the gapped and gapless boundaries of our model are consistent with those of band-theoretic, weakly interacting topological insulators. Interestingly, on certain lattices our time-reversal-symmetric models also enjoy $mathcal{CP}$ symmetry, leading to intuitive interpretations of the bulk invariant for a $mathcal{CP}$-symmetric topological insulator upon putting the system on a Klein bottle. We also briefly discuss how these many-body invariants may be able to characterize models with only time-reversal symmetry.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا