Do you want to publish a course? Click here

Diagnose like a Radiologist: Attention Guided Convolutional Neural Network for Thorax Disease Classification

84   0   0.0 ( 0 )
 Added by Qingji Guan
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

This paper considers the task of thorax disease classification on chest X-ray images. Existing methods generally use the global image as input for network learning. Such a strategy is limited in two aspects. 1) A thorax disease usually happens in (small) localized areas which are disease specific. Training CNNs using global image may be affected by the (excessive) irrelevant noisy areas. 2) Due to the poor alignment of some CXR images, the existence of irregular borders hinders the network performance. In this paper, we address the above problems by proposing a three-branch attention guided convolution neural network (AG-CNN). AG-CNN 1) learns from disease-specific regions to avoid noise and improve alignment, 2) also integrates a global branch to compensate the lost discriminative cues by local branch. Specifically, we first learn a global CNN branch using global images. Then, guided by the attention heat map generated from the global branch, we inference a mask to crop a discriminative region from the global image. The local region is used for training a local CNN branch. Lastly, we concatenate the last pooling layers of both the global and local branches for fine-tuning the fusion branch. The Comprehensive experiment is conducted on the ChestX-ray14 dataset. We first report a strong global baseline producing an average AUC of 0.841 with ResNet-50 as backbone. After combining the local cues with the global information, AG-CNN improves the average AUC to 0.868. While DenseNet-121 is used, the average AUC achieves 0.871, which is a new state of the art in the community.



rate research

Read More

Classifying the sub-categories of an object from the same super-category (e.g. bird species, car and aircraft models) in fine-grained visual classification (FGVC) highly relies on discriminative feature representation and accurate region localization. Existing approaches mainly focus on distilling information from high-level features. In this paper, however, we show that by integrating low-level information (e.g. color, edge junctions, texture patterns), performance can be improved with enhanced feature representation and accurately located discriminative regions. Our solution, named Attention Pyramid Convolutional Neural Network (AP-CNN), consists of a) a pyramidal hierarchy structure with a top-down feature pathway and a bottom-up attention pathway, and hence learns both high-level semantic and low-level detailed feature representation, and b) an ROI guided refinement strategy with ROI guided dropblock and ROI guided zoom-in, which refines features with discriminative local regions enhanced and background noises eliminated. The proposed AP-CNN can be trained end-to-end, without the need of additional bounding box/part annotations. Extensive experiments on three commonly used FGVC datasets (CUB-200-2011, Stanford Cars, and FGVC-Aircraft) demonstrate that our approach can achieve state-of-the-art performance. Code available at url{http://dwz1.cc/ci8so8a}
Convolutional neural networks (CNN) are now being widely used for classifying and detecting pulmonary abnormalities in chest radiographs. Two complementary generalization properties of CNNs, translation invariance and equivariance, are particularly useful in detecting manifested abnormalities associated with pulmonary disease, regardless of their spatial locations within the image. However, these properties also come with the loss of exact spatial information and global relative positions of abnormalities detected in local regions. Global relative positions of such abnormalities may help distinguish similar conditions, such as COVID-19 and viral pneumonia. In such instances, a global attention mechanism is needed, which CNNs do not support in their traditional architectures that aim for generalization afforded by translation invariance and equivariance. Vision Transformers provide a global attention mechanism, but lack translation invariance and equivariance, requiring significantly more training data samples to match generalization of CNNs. To address the loss of spatial information and global relations between features, while preserving the inductive biases of CNNs, we present a novel technique that serves as an auxiliary attention mechanism to existing CNN architectures, in order to extract global correlations between salient features.
In this paper, we present an attention-guided deformable convolutional network for hand-held multi-frame high dynamic range (HDR) imaging, namely ADNet. This problem comprises two intractable challenges of how to handle saturation and noise properly and how to tackle misalignments caused by object motion or camera jittering. To address the former, we adopt a spatial attention module to adaptively select the most appropriate regions of various exposure low dynamic range (LDR) images for fusion. For the latter one, we propose to align the gamma-corrected images in the feature-level with a Pyramid, Cascading and Deformable (PCD) alignment module. The proposed ADNet shows state-of-the-art performance compared with previous methods, achieving a PSNR-$l$ of 39.4471 and a PSNR-$mu$ of 37.6359 in NTIRE 2021 Multi-Frame HDR Challenge.
Crop failure owing to pests & diseases are inherent within Indian agriculture, leading to annual losses of 15 to 25% of productivity, resulting in a huge economic loss. This research analyzes the performance of various optimizers for predictive analysis of plant diseases with deep learning approach. The research uses Convolutional Neural Networks for classification of farm or plant leaf samples of 3 crops into 15 classes. The various optimizers used in this research include RMSprop, Adam and AMSgrad. Optimizers Performance is visualised by plotting the Training and Validation Accuracy and Loss curves, ROC curves and Confusion Matrix. The best performance is achieved using Adam optimizer, with the maximum validation accuracy being 98%. This paper focuses on the research analysis proving that plant diseases can be predicted and pre-empted using deep learning methodology with the help of satellite, drone based or mobile based images that result in reducing crop failure and agricultural losses.
Chest X-ray becomes one of the most common medical diagnoses due to its noninvasiveness. The number of chest X-ray images has skyrocketed, but reading chest X-rays still have been manually performed by radiologists, which creates huge burnouts and delays. Traditionally, radiomics, as a subfield of radiology that can extract a large number of quantitative features from medical images, demonstrates its potential to facilitate medical imaging diagnosis before the deep learning era. In this paper, we develop an end-to-end framework, ChexRadiNet, that can utilize the radiomics features to improve the abnormality classification performance. Specifically, ChexRadiNet first applies a light-weight but efficient triplet-attention mechanism to classify the chest X-rays and highlight the abnormal regions. Then it uses the generated class activation map to extract radiomic features, which further guides our model to learn more robust image features. After a number of iterations and with the help of radiomic features, our framework can converge to more accurate image regions. We evaluate the ChexRadiNet framework using three public datasets: NIH ChestX-ray, CheXpert, and MIMIC-CXR. We find that ChexRadiNet outperforms the state-of-the-art on both disease detection (0.843 in AUC) and localization (0.679 in T(IoU) = 0.1). We will make the code publicly available at https://github.com/bionlplab/lung_disease_detection_amia2021, with the hope that this method can facilitate the development of automatic systems with a higher-level understanding of the radiological world.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا