Do you want to publish a course? Click here

UV SEDs of early-type cluster galaxies: A new look at the UV upturn

78   0   0.0 ( 0 )
 Added by Roberto De Propris
 Publication date 2018
  fields Physics
and research's language is English
 Authors S. S. Ali




Ask ChatGPT about the research

Using GALEX, UVOT and optical photometry, we explore the prevalence and strength of the UV-upturn in the spectra of quiescent early type galaxies in several nearby clusters. Even for galaxies with completely passive optical colours, there is a large spread in vacuum UV colour consistent with almost all having some UV upturn component. Combining GALEX and UVOT data below 3000AA, we generate for the first time comparatively detailed UV SEDs for Coma cluster galaxies. Fitting the UV upturn component with a blackbody, twenty six of these show a range of characteristic temperatures (10000--21000K) for the UV upturn population. Assuming a single temperature to explain GALEX-optical colours could underestimate the fraction of galaxies with UV upturns and mis-classify some as systems with residual star formation. The UV upturn phenomenon is not an exclusive feature found only in giant galaxies; we identify galaxies with similar (or even bluer) $FUV-V$ colours to the giants with upturns over a range of fainter luminosities. The temperature and strength of the UV upturn are correlated with galaxy mass. Under the plausible hypothesis that the sources of the UV upturn are blue horizontal branch stars, the most likely mechanism for this is the presence of a substantial (between 4% and 20%) Helium rich ($Y > 0.3$) population of stars in these galaxies, potentially formed at $zsim 4$ and certainly at $z>2$; this plausibly sets a lower limit of $sim {rm 0.3 - 0.8} times 10^{10}$ $M_{odot}$ to the {it in situ} stellar mass of $sim L^*$ galaxies at this redshift.



rate research

Read More

This paper is part of a series devoted to the investigation of a large sample of brightest cluster galaxies (BCGs), their properties and the relationships between these and the properties of the host clusters. In this paper, we compare the stellar population properties derived from high signal-to-noise, optical long-slit spectra with the GALEX ultraviolet (UV) colour measurements for 36 nearby BCGs to understand the diversity in the most rapidly evolving feature in old stellar systems, the UV-upturn. We investigate: (1) the possible differences between the UV-upturn of BCGs and those of a control sample of ordinary ellipticals in the same mass range, as well as possible correlations between the UV-upturn and other general properties of the galaxies; (2) possible correlations between the UV-upturn and the properties of the host clusters; (3) recently proposed scenarios where helium-sedimentation in the cluster centre can produce an enhanced UV-upturn. We find systematic differences between the UV-colours of BCGs and ordinary ellipticals, but we do not find correlations between these colours and the properties of the host clusters. Furthermore, the observations do not support the predictions made by the helium-sedimentation model as an enhancer of the UV-upturn.
104 - Sadman S. Ali 2018
We have measured the strength of the UV upturn for red sequence galaxies in the Abell~1689 cluster at $z=0.18$, reaching to or below the $L^*$ level and therefore probing the general evolution of the upturn phenomenon. We find that the range of UV upturn strengths in the population as a whole has not declined over the past 2.2 Gyrs. This is consistent with a model where hot horizontal branch stars, produced by a Helium-enriched population, provide the required UV flux. Based on local counterparts, this interpretation of the result implies Helium abundances of at least 1.5 times the primordial value for this HB population, along with high formation and assembly redshifts for the galaxies and at least a subset of their stellar populations.
It is suspected that the ultraviolet (UV) upturn phenomenon in elliptical galaxies and extended horizontal-branch stars in globular clusters have a common origin. An extremely high abundance of helium (Y~0.4) allows for a working hypothesis, but its origin is unclear. Peng & Nagai (2009) proposed that primordial helium sedimentation in dark haloes over cosmic timescales may lead to extreme helium abundances in galaxy cluster centers. In this scenario UV upturn should be restricted to brightest cluster galaxies (BCGs) only. This is a clear and testable prediction. We present tests of this hypothesis using galaxy clusters from Yoon et al. (2008) that were detected by both the Sloan Digital Sky Survey and the Galaxy Evolution Explorer Medium Imaging Survey. Using a new UV classification scheme based on far-UV, near-UV, and optical photometry we found only 5% of cluster elliptical galaxies show a UV upturn, while 27% and 68% are classified as recent star-formation and UV-weak ellipticals, respectively. The data reveal a modest positive dependence of the UV upturn fraction on galaxy velocity dispersion, which is in agreement with the earlier findings of Burstein et al. (1988) and possibly with the helium sedimentation theory. However, we do not see any dependency on rank or luminosity of galaxies. Besides, BCGs do not show any marked difference in UV upturn fraction or strength, which is inconsistent with the prediction. We conclude that the aforementioned helium sedimentation theory and its inferred environmental effects are not supported by the available data.
We study the UV properties of a volume limited sample of early-type galaxies in the Virgo cluster combining new GALEX far- (1530 A) and near-ultraviolet (2310 A) data with spectro-photometric data available at other wavelengths. The sample includes 264 ellipticals, lenticulars and dwarfs spanning a large range in luminosity (M(B)<-15). While the NUV to optical or near-IR color magnitude relations (CMR) are similar to those observed at optical wavelengths, with a monotonic reddening of the color index with increasing luminosity, the (FUV-V) and (FUV-H) CMRs show a discontinuity between massive and dwarf objects. An even more pronounced dichotomy is observed in the (FUV-NUV) CMR. For ellipticals the (FUV-NUV) color becomes bluer with increasing luminosity and with increasing reddening of the optical or near-IR color indices. For the dwarfs the opposite trend is observed. These observational evidences are consistent with the idea that the UV emission is dominated by hot, evolved stars in giant systems, while in dwarf ellipticals residual star formation activity is more common.
We exploit stellar population models of absorption line indices in the ultraviolet (from 2000 - 3200 Angstrom) to study the spectra of massive galaxies. Our central aim is to investigate the occurrence at high-redshift of the UV upturn, i.e. the increased UV emission due to old stars observed in massive galaxies and spiral bulges in the local Universe. We use a large (~275,000) sample of z~0.6 massive (log M*/Msun > 11.5) galaxies using both individual spectra and stacks and employ a suite of models including a UV contribution from old populations, spanning various effective temperatures, fuel consumptions and metallicities. We find that a subset of our indices, Mg I, Fe I, and BL3096, are able to differentiate between old and young UV ages. We find evidence for old stars contributing to the UV in massive galaxies, rather than star formation. The data favour models with low/medium upturn temperatures (10,000 - 25,000K) consistent with local galaxies, depending on the assumed metallicity, and with a larger fuel (f ~ 0.065 Msun). Models with one typical temperature are favoured over models with a temperature range, which would be typical of an extended horizontal branch. Old UV-bright populations are found in the whole galaxy sample (~92%), with a mass fraction peaking around 20-30%. Upturn galaxies are massive and have redder colours, in agreement with findings in the local Universe. We find that the upturn phenomenon appears at z~1 and its frequency increases towards lower redshift, as expected by stellar evolution of low mass stars. Our findings will help constrain stellar evolution in the exotic UV upturn phase.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا