Do you want to publish a course? Click here

End to End Performance Analysis of Relay Cooperative Communication Based on Parked Cars

127   0   0.0 ( 0 )
 Added by Tao Han
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Parking lots (PLs) are usually full with cars. If these cars are formed into a self-organizing vehicular network, they can be new kind of road side units (RSUs) in urban area to provide communication data forwarding between mobile terminals nearby and a base station. However cars in PLs can leave at any time, which is neglected in the existing studies. In this paper, we investigate relay cooperative communication based on parked cars in PLs. Taking the impact of the cars leaving behavior into consideration, we derive the expressions of outage probability in a two-hop cooperative communication and its link capacity. Finally, the numerical results show that the impact of a cars arriving time is greater than the impact of the duration the car has parked on outage probability.



rate research

Read More

Telemedicine refers to the use of information and communication technology to assist with medical information and services. In health care applications, high reliable communication links between the health care provider and the desired destination in the human body play a central role in designing end-to-end (E2E) telemedicine system. In the advanced health care applications, $text{e.g.}$ drug delivery, molecular communication becomes a major building block in bio-nano-medical applications. In this paper, an E2E communication link consisting of the electromagnetic and the molecular link is investigated. This paradigm is crucial when the body is a part of the communication system. Based on the quality of service (QoS) metrics, we present a closed-form expression for the E2E BER of the combination of molecular and wireless electromagnetic communications. textcolor{black}{ Next, we formulate an optimization problem with the aim of minimizing the E2E BER of the system to achieve the optimal symbol duration for EC and DMC regarding the imposing delivery time from telemedicine services.} The proposed problem is solved by an iterative algorithm based on the bisection method. Also, we study the impact of the system parameters, including drift velocity, detection threshold at the receiver in molecular communication, on the performance of the system. Numerical results show that the proposed method obtains the minimum E2E bit error probability by selecting an appropriate symbol duration of electromagnetic and molecular communications.
Molecular communication (MC) allows nanomachines to communicate and cooperate with each other in a fluid environment. The diffusion-based MC is popular but is easily constrained by the transmit distance due to the severe attenuation of molecule concentrations. In this letter, we present a decode-and-forward (DF) relay strategy for the reversible binding receptor in the diffusion-based MC system. The time-varying spatial distribution of the information molecules based on the reversible association and dissociation between ligand and receptor at the surface of receiver is characterized. An analytical expression for the evaluation of expected error probability is derived, and the key factors impacting on the performance are exploited. Results show that with a constant molecular budget, the proposal can improve the performance significantly, and the performance gain can be enhanced by optimizing the position of the relay node and the number of molecules assigned to the source node.
In this paper, an unsupervised machine learning method for geometric constellation shaping is investigated. By embedding a differentiable fiber channel model within two neural networks, the learning algorithm is optimizing for a geometric constellation shape. The learned constellations yield improved performance to state-of-the-art geometrically shaped constellations, and include an implicit trade-off between amplification noise and nonlinear effects. Further, the method allows joint optimization of system parameters, such as the optimal launch power, simultaneously with the constellation shape. An experimental demonstration validates the findings. Improved performances are reported, up to 0.13 bit/4D in simulation and experimentally up to 0.12 bit/4D.
The capacity regions are investigated for two relay broadcast channels (RBCs), where relay links are incorporated into standard two-user broadcast channels to support user cooperation. In the first channel, the Partially Cooperative Relay Broadcast Channel, only one user in the system can act as a relay and transmit to the other user through a relay link. An achievable rate region is derived based on the relay using the decode-and-forward scheme. An outer bound on the capacity region is derived and is shown to be tighter than the cut-set bound. For the special case where the Partially Cooperative RBC is degraded, the achievable rate region is shown to be tight and provides the capacity region. Gaussian Partially Cooperative RBCs and Partially Cooperative RBCs with feedback are further studied. In the second channel model being studied in the paper, the Fully Cooperative Relay Broadcast Channel, both users can act as relay nodes and transmit to each other through relay links. This is a more general model than the Partially Cooperative RBC. All the results for Partially Cooperative RBCs are correspondingly generalized to the Fully Cooperative RBCs. It is further shown that the AWGN Fully Cooperative RBC has a larger achievable rate region than the AWGN Partially Cooperative RBC. The results illustrate that relaying and user cooperation are powerful techniques in improving the capacity of broadcast channels.
To realize cooperative computation and communication in a relay mobile edge computing system, we develop a hybrid relay forward protocol, where we seek to balance the execution delay and network energy consumption. The problem is formulated as a nondifferentible optimization problem which is nonconvex with highly coupled constraints. By exploiting the problem structure, we propose a lightweight algorithm based on inexact block coordinate descent method. Our results show that the proposed algorithm exhibits much faster convergence as compared with the popular concave-convex procedure based algorithm, while achieving good performance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا