Do you want to publish a course? Click here

Bogoliubov de Gennes equation on metric graphs

300   0   0.0 ( 0 )
 Added by Davron Matrasulov
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider Bogoliubov de Gennes equation on metric graphs. The vertex boundary conditions providing self-adjoint realization of the Bogoliubov de Gennes operator on a metric star graph are derived. Secular equation providing quantization of the energy and the vertex transmission matrix are also obtained. Application of the model for Majorana wire networks is discussed.



rate research

Read More

167 - Simon Lieu 2018
The Bernard-LeClair (BL) symmetry classes generalize the ten-fold way classes in the absence of Hermiticity. Within the BL scheme, time-reversal and particle-hole come in two flavors, and pseudo-Hermiticity generalizes Hermiticity. We propose that these symmetries are relevant for the topological classification of non-Hermitian single-particle Hamiltonians and Hermitian bosonic Bogoliubov-de Gennes (BdG) models. We show that the spectrum of any Hermitian bosonic BdG Hamiltonian is found by solving for the eigenvalues of a non-Hermitian matrix which belongs to one of the BL classes. We therefore suggest that bosonic BdG Hamiltonians inherit the topological properties of a non-Hermitian symmetry class and explore the consequences by studying symmetry-protected edge instabilities in a simple 1D system.
82 - Hong Y. Ling , Ben Kain 2020
Dynamical instability is an inherent feature of bosonic systems described by the Bogoliubov de Geenes (BdG) Hamiltonian. Since it causes the BdG system to collapse, it is generally thought that it should be avoided. Recently, there has been much effort to harness this instability for the benefit of creating a topological amplifier with stable bulk bands but unstable edge modes which can be populated at an exponentially fast rate. We present a theorem for determining the stability of states with energies sufficiently away from zero, in terms of an unconventional commutator between the number conserving part and number nonconserving part of the BdG Hamiltonian. We apply the theorem to a generalization of a model from Galilo et al. [Phys. Rev. Lett, 115, 245302(2015)] for creating a topological amplifier in an interacting spin-1 atom system in a honeycomb lattice through a quench process. We use this model to illustrate how the vanishing of the unconventional commutator selects the symmetries for a system so that its bulk states are stable against (weak) pairing interactions. We find that as long as time reversal symmetry is preserved, our system can act like a topological amplifier, even in the presence of an onsite staggered potential which breaks the inversion symmetry.
We study a Majorana zero-energy state bound to a hedgehog-like point defect in a topological superconductor described by a Bogoliubov-de Gennes (BdG)-Dirac type effective Hamiltonian. We first give an explicit wave function of a Majorana state by solving the BdG equation directly, from which an analytical index can be obtained. Next, by calculating the corresponding topological index, we show a precise equivalence between both indices to confirm the index theorem. Finally, we apply this observation to reexamine the role of another topological invariant, i.e., the Chern number associated with the Berry curvature proposed in the study of protected zero modes along the lines of topological classification of insulators and superconductors. We show that the Chern number is equivalent to the topological index, implying that it indeed reflects the number of zero-energy states. Our theoretical model belongs to the BDI class from the viewpoint of symmetry, whereas the spatial dimension of the system is left arbitrary throughout the paper.
We develop a systematic approach for constructing symmetry-based indicators of a topological classification for superconducting systems. The topological invariants constructed in this work form a complete set of symmetry-based indicators that can be computed from knowledge of the Bogoliubov-de Gennes Hamiltonian on high-symmetry points in Brillouin zone. After excluding topological invariants corresponding to the phases without boundary signatures, we arrive at natural generalization of symmetry-based indicators [H. C. Po, A. Vishwanath, and H. Watanabe, Nature Comm. 8, 50 (2017)] to Hamiltonians of Bogoliubov-de Gennes type.
We consider quantum graphs with transparent branching points. To design such networks, the concept of transparent boundary conditions is applied to the derivation of the vertex boundary conditions for the linear Schrodinger equation on metric graphs. This allows to derive simple constraints, which use equivalent usual Kirchhoff-type boundary conditions at the vertex to the transparent ones. The approach is applied to quantum star and tree graphs. However, extension to more complicated graph topologies is rather straight forward.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا