Do you want to publish a course? Click here

Selective highly charged ions as the prospective optical clock candidates with quality factors larger than $10^{15}$

83   0   0.0 ( 0 )
 Added by Yanmei Yu
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose here a few selective highly charged ions (HCIs), namely Ni$^{12+}$ and Cu$^{13+}$, Pd$^{12+}$ and Ag$^{13+}$, that not only promise to be very high accurate optical clocks below $10^{-19}$ uncertainties, but also offer quality factors larger than $10^{15}$ and yet possess simple atomic structures for the experimental set-up. Moreover, these ions have strong optical magnetic-dipole (M1) transitions than the previously proposed HCI clocks. They can be used for the cooling and detection techniques. To demonstrate the projected fractional uncertainties below $10^{-19}$ level, we have estimated the typical orders of magnitudes due to many of the conventional systematics manifested in an atomic clock experiment, such as Zeeman, Stark, black-body radiation, and electric quadrupole shifts, by performing calculations of the relevant atomic properties.



rate research

Read More

82 - Paul Indelicato 2019
The current status of bound state quantum electrodynamics calculations of transition energies for few-electron ions is reviewed. Evaluation of one and two body QED correction is presented, as well as methods to evaluate many-body effects that cannot beevaluated with present-day QED calculations. Experimental methods, their evolution over time, as well as progress in accuracy are presented. A detailed, quantitative, comparison between theory and experiment is presented for transition energies in few-electron ions. In particular the impact of the nuclear size correction on the quality of QED tests as a function of the atomic number is discussed.The cases of hyperfine transition energies and of bound-electron Land{e} $g$-factor are also considered.
We propose a novel class of atomic clocks based on highly charged ions. We consider highly-forbidden laser-accessible transitions within the $4f^{12}$ ground-state configurations of highly charged ions. Our evaluation of systematic effects demonstrates that these transitions may be used for building exceptionally accurate atomic clocks which may compete in accuracy with recently proposed nuclear clock.
Highly charged ions (HCIs) are promising candidates for the next generation of atomic clocks, owing to their tightly bound electron cloud, which significantly suppresses the common environmental disturbances to the quantum oscillator. Here we propose and pursue an experimental strategy that, while focusing on various HCIs of a single atomic element, keeps the number of candidate clock transitions as large as possible. Following this strategy, we identify four adjacent charge states of nickel HCIs that offer as many as six optical transitions. Experimentally, we demonstrated the essential capability of producing these ions in the low-energy compact Shanghai-Wuhan Electron Beam Ion Trap. We measured the wavelengths of four magnetic-dipole ($M$1) and one electric-quadrupole ($E$2) clock transitions with an accuracy of several ppm with a novel calibration method; two of these lines were observed and characterized for the first time in controlled laboratory settings. Compared to the earlier determinations, our measurements improved wavelength accuracy by an order of magnitude. Such measurements are crucial for constraining the range of laser wavelengths for finding the needle in a haystack narrow lines. In addition, we calculated frequencies and quality factors, evaluated sensitivity of these six transitions to the hypothetical variation of the electromagnetic fine structure constant $alpha$ needed for fundamental physics applications. We argue that all the six transitions in nickel HCIs offer intrinsic immunity to all common perturbations of quantum oscillators, and one of them has the projected fractional frequency uncertainty down to the remarkable level of 10$^{-19}$.
We study electronic transitions in highly-charged Cf ions that are within the frequency range of optical lasers and have very high sensitivity to potential variations in the fine-structure constant, alpha. The transitions are in the optical despite the large ionisation energies because they lie on the level-crossing of the 5f and 6p valence orbitals in the thallium isoelectronic sequence. Cf16+ is a particularly rich ion, having several narrow lines with properties that minimize certain systematic effects. Cf16+ has very large nuclear charge and large ionisation energy, resulting in the largest alpha-sensitivity seen in atomic systems. The lines include positive and negative shifters.
We present a novel method for engineering an optical clock transition that is robust against external field fluctuations and is able to overcome limits resulting from field inhomogeneities. The technique is based on the application of continuous driving fields to form a pair of dressed states essentially free of all relevant shifts. Specifically, the clock transition is robust to magnetic shifts, quadrupole and other tensor shifts, and amplitude fluctuations of the driving fields. The scheme is applicable to either a single ion or an ensemble of ions, and is relevant for several types of ions, such as $^{40}mathrm{Ca}^{+}$, $^{88}mathrm{Sr}^{+}$, $^{138}mathrm{Ba}^{+}$ and $^{176}mathrm{Lu}^{+}$. Taking a spherically symmetric Coulomb crystal formed by 400 $^{40}mathrm{Ca}^{+}$ ions as an example, we show through numerical simulations that the inhomogeneous linewidth of tens of Hertz in such a crystal together with linear Zeeman shifts of order 10~MHz are reduced to form a linewidth of around 1~Hz. We estimate a two-order-of-magnitude reduction in averaging time compared to state-of-the art single ion frequency references, assuming a probe laser fractional instability of $10^{-15}$. Furthermore, a statistical uncertainty reaching $2.9times 10^{-16}$ in 1~s is estimated for a cascaded clock scheme in which the dynamically decoupled Coulomb crystal clock stabilizes the interrogation laser for an $^{27}mathrm{Al}^{+}$ clock.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا