No Arabic abstract
The motion of a rolling ball actuated by internal point masses that move inside the balls frame of reference is considered. The equations of motion are derived by applying Euler-Poincares symmetry reduction method in concert with Lagrange-dAlemberts principle, which accounts for the presence of the nonholonomic rolling constraint. As a particular example, we consider the case when the masses move along internal rails, or trajectories, of arbitrary shape and fixed within the balls frame of reference. Our system of equations can treat most possible methods of actuating the rolling ball with internal moving masses encountered in the literature, such as circular motion of the masses mimicking swinging pendula or straight line motion of the masses mimicking magnets sliding inside linear tubes embedded within a solenoid. Moreover, our method can model arbitrary rail shapes and an arbitrary number of rails such as several ellipses and/or figure eights, which may be important for future designs of rolling ball robots. For further analytical study, we also reduce the system to a single differential equation when the motion is planar, that is, considering the motion of the rolling disk actuated by internal point masses, in which case we show that the results obtained from the variational derivation coincide with those obtained from Newtons second law. Finally, the equations of motion are solved numerically, illustrating a wealth of complex behaviors exhibited by the systems dynamics. Our results are relevant to the dynamics of nonholonomic systems containing internal degrees of freedom and to further studies of control of such systems actuated by internal masses.
The controlled motion of a rolling ball actuated by internal point masses that move along arbitrarily-shaped rails fixed within the ball is considered. The controlled equations of motion are solved numerically using a predictor-corrector continuation method, starting from an initial solution obtained via a direct method, to realize trajectory tracking and obstacle avoidance maneuvers.
The controlled motion of a rolling ball actuated by internal point masses that move along arbitrarily-shaped rails fixed within the ball is considered. Application of the variational Pontryagins minimum principle yields the balls controlled equations of motion, a solution of which obeys the balls uncontrolled equations of motion, satisfies prescribed initial and final conditions, and minimizes a prescribed performance index.
The goal of this paper is to investigate the normal and tangential forces acting at the point of contact between a horizontal surface and a rolling ball actuated by internal point masses moving in the balls frame of reference. The normal force and static friction are derived from the equations of motion for a rolling ball actuated by internal point masses that move inside the balls frame of reference, and, as a special case, a rolling disk actuated by internal point masses. The masses may move along one-dimensional trajectories fixed in the balls and disks frame. The dynamics of a ball and disk actuated by masses moving along one-dimensional trajectories are simulated numerically and the minimum coefficients of static friction required to prevent slippage are computed.
This paper is devoted to the study of periodic solutions for a radially symmetric semilinear wave equation in an $n$-dimensional ball. By combining the variational methods and saddle point reduction technique, we prove there exist at least three periodic solutions for arbitrary space dimension $n$. The structure of the spectrum of the linearized problem plays an essential role in the proof, and the construction of a suitable working space is devised to overcome the restriction of space dimension.
A two-dimensional water wave system is examined consisting of two discrete incompressible fluid domains separated by a free common interface. In a geophysical context this is a model of an internal wave, formed at a pycnocline or thermocline in the ocean. The system is considered as being bounded at the bottom and top by a flatbed and wave-free surface respectively. A current profile with depth-dependent currents in each domain is considered. The Hamiltonian of the system is determined and expressed in terms of canonical wave-related variables. Limiting behaviour is examined and compared to that of other known models. The linearised equations as well as long-wave approximations are presented.