No Arabic abstract
We use QCD spectral sum rules (QSSR) and the factorization properties of molecule and four-quark currents to estimate the masses and couplings of the 0+ and 1+ molecules and four-quark at N2LO of PT QCD. We include in the OPE the contributions of non-perturbative condensates up to dimension-six. Within the Laplace sum rules approach (LSR) and in the MS-scheme, we summarize our results in Table 2, which agree within the errors with some of the observed XZ-like molecules or/and four-quark. Couplings of these states to the currents are also extracted. Our results are improvements of the LO ones in the existing literature.
These talks review and summarize our results in [1,2] on $XYZ$-like spectra obtained from QCD Laplace Sum Rules in the chiral limit at next-to-next-leading order (N2LO) of perturbation theory (PT) and including leading order (LO) contributions of dimensions $dleq 6-8$ non-perturbative condensates. We conclude that the observed $XZ$ states are good candidates for $1^{+}$ and $0^+$ molecules or / and four-quark states while the predictions for $1^-$ and $0^-$ states are about 1.5 GeV above the $Y_{c,b}$ experimental candidates and hadronic thresholds. We (numerically) find that these exotic molecules couple weakly to the corresponding interpolating currents than ordinary $D,B$ heavy-light mesons while we observe that these couplings decrease faster [$1/m_b^{3/2}$ (resp. $1/m_b$) for the $1^+,0^+$ (resp. $1^-,0^-)$ states] than $1/m_b^{1/2}$. Our results do not also confirm the existence of the $X(5568)$ state in agreement with LHCb findings.
We present new compact integrated expressions of QCD spectral functions of heavy-light molecules and four-quark $XYZ$-like states at lowest order (LO) of perturbative (PT) QCD and up to $d=8$ condensates of the Operator Product Expansion (OPE). Then, by including up to next-to-next leading order (N2LO) PT QCD corrections, which we have estimated by assuming the factorization of the four-quark spectral functions, we improve previous LO results from QCD spectral sum rules (QSSR), on the $XYZ$-like masses and decay constants which suffer from the ill-defined heavy quark mass. PT N3LO corrections are estimated using a geometric growth of the PT series and are included in the systematic errors. Our optimal results based on stability criteria are summarized in Tables 11 to 14 and compared, in Section 10, with experimental candidates and some LO QSSR results. We conclude that the masses of the $XZ$ observed states are compatible with (almost) pure $J^{PC}=1^{+pm}, 0^{++}$ molecule or/and four-quark states. The ones of the $1^{-pm}, 0^{-pm}$ molecule / four-quark states are about 1.5 GeV above the $Y_{c,b}$ mesons experimental candidates and hadronic thresholds. We also find that the couplings of these exotics to the associated interpolating currents are weaker than that of ordinary $D,B$ mesons ($f_{DD}approx 10^{-3}f_D$) and may behave numerically as $1/ bar m_b^{3/2}$ (resp. $1/ bar m_b$) for the $1^{+},0^{+}$ (resp. $1^{-}, 0^{-}$) states which can stimulate further theoretical studies of these decay constants.
The ladder kernel of the Bethe-Salpeter equation is amended by introducing a different flavor dependence of the dressing functions in the heavy-quark sector. Compared with earlier work this allows for the simultaneous calculation of the mass spectrum and leptonic decay constants of light pseudoscalar mesons, the $D_u$, $D_s$, $B_u$, $B_s$ and $B_c$ mesons and the heavy quarkonia $eta_c$ and $eta_b$ within the same framework at a physical pion mass. The corresponding Bethe-Salpeter amplitudes are projected onto the light front and we reconstruct the distribution amplitudes of the mesons in the full theory. A comparison with the first inverse moment of the heavy meson distribution amplitude in heavy quark effective theory is made.
We summarize recently improved results for the pseudoscalar [1,2] and vector [3] meson decay constants and their ratios from QCD spectral sum rules where N2LO + estimate of the N3LO PT and power corrections up to d< 6 dimensions have been included in the SVZ expansion. The optimal results based on stability criteria with respect to the variations of the Laplace/Moments sum rule variables, QCD continuum threshold and subtraction constant mu are compared with recent sum rules and lattice calculations. To understand the apparent tension between some recent results for f_B*/f_B, we present in Section 8 a novel extraction of this ratio from heavy quark effective theory (HQET) sum rules by including the normalization factor (M_b/M_B)^2 relating the pseudoscalar to the universal HQET correlators for finite b-quark and B-meson masses. We obtain f_B*/f_B=1.025(16) in good agreement with the one 1.016(16) from (pseudo)scalar sum rules in full QCD [3]. We complete the paper by including new improved estimates of the scalar, axial-vector and B^*_c meson decays constants (Sections 11-13). For further phenomenological uses, we attempt to extract a Global Average of different sum rules and lattice determinations of the decay constants which are summarized in Tables 2-6. We do not found any deviation of these SM results from the present data.
Some of the currently most popular conjectures for the structure of the recently discovered heavy mesons that do not find a place in the quark model quarkonium spectrum are sketched. Furthermore, some observables are identified that should allow one to identify the most prominent components of individual states.