Do you want to publish a course? Click here

A rhombohedral ferroelectric phase in epitaxially-strained Hf0.5Zr0.5O2 thin films

83   0   0.0 ( 0 )
 Added by Yingfen Wei
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

After decades of searching for robust nanoscale ferroelectricity that could enable integration into the next generation memory and logic devices, hafnia-based thin films have appeared as the ultimate candidate because their ferroelectric (FE) polarization becomes more robust as the size is reduced. This exposes a new kind of ferroelectricity, whose mechanism still needs to be understood. Towards this end, thin films with increased crystal quality are needed. We report the epitaxial growth of Hf0.5Zr0.5O2 (HZO) thin films on (001)-oriented La0.7Sr0.3MnO3/SrTiO3 (STO) substrates. The films, which are under epitaxial compressive strain and are predominantly (111)-oriented, display large FE polarization values up to 34 {mu}C/cm2 and do not need wake-up cycling. Structural characterization reveals a rhombohedral phase, different from the commonly reported polar orthorhombic phase. This unexpected finding allows us to propose a compelling model for the formation of the FE phase. In addition, these results point towards nanoparticles of simple oxides as a vastly unexplored class of nanoscale ferroelectrics.



rate research

Read More

The unconventional Si-compatible ferroelectricity in hafnia-based systems, which becomes robust only at nanoscopic sizes, has attracted a lot of interest. While a metastable polar orthorhombic (o-) phase (Pca21) is widely regarded as the responsible phase for ferroelectricity, a higher energy polar rhombohedral (r-) phase is recently reported on epitaxial HfZrO4 (HZO) films grown on (001) SrTiO3 (R3m or R3), (0001) GaN (R3), and Si (111). Armed with results on these systems, here we report a systematic study leading towards identifying comprehensive global trends for stabilizing r-phase polymorphs in epitaxially grown HZO thin films (6 nm) on various substrates (perovskites, hexagonal and Si).
Doping ferroelectric Hf0.5Zr0.5O2 with La is a promising route to improve endurance. However, the beneficial effect of La on the endurance of polycrystalline films may be accompanied by degradation of the retention. We have investigated the endurance - retention dilemma in La-doped epitaxial films. Compared to undoped epitaxial films, large values of polarization are obtained in a wider thickness range, whereas the coercive fields are similar, and the leakage current is substantially reduced. Compared to polycrystalline La-doped films, epitaxial La-doped films show more fatigue but there is not significant wake-up effect and endurance-retention dilemma. The persistent wake-up effect common to polycrystalline La-doped Hf0.5Zr0.5O2 films, is limited to a few cycles in epitaxial films. Despite fatigue, endurance in epitaxial La-doped films is more than 1010 cycles, and this good property is accompanied by excellent retention of more than 10 years. These results demonstrate that wake-up effect and endurance-retention dilemma are not intrinsic in La-doped Hf0.5Zr0.5O2.
The metastable orthorhombic phase of hafnia is generally obtained in polycrystalline films, whereas in epitaxial films, its formation has been much less investigated. We have grown Hf0.5Zr0.5O2 films by pulsed laser deposition, and the growth window (temperature and oxygen pressure during deposition and film thickness) for epitaxial stabilization of the ferroelectric phase is mapped. The remnant ferroelectric polarization, up to around 24 uC/cm2, depends on the amount of orthorhombic phase and interplanar spacing and increases with temperature and pressure for a fixed film thickness. The leakage current decreases with an increase in thickness or temperature, or when decreasing oxygen pressure. The coercive electric field (EC) depends on thickness (t) according to the coercive electric field (Ec) - thickness (t)-2/3 scaling, which is observed for the first time in ferroelectric hafnia, and the scaling extends to thicknesses down to around 5 nm. The proven ability to tailor the functional properties of high-quality epitaxial ferroelectric Hf0.5Zr0.5O2 films paves the way toward understanding their ferroelectric properties and prototyping devices.
The critical impact of epitaxial stress on the stabilization of the ferroelectric orthorhombic phase of hafnia is proved. Epitaxial bilayers of Hf0.5Zr0.5O2 and La0.67Sr0.33MnO3 electrodes were grown on a set of single crystalline oxide 001-oriented, cubic or pseudocubic setting, substrates with lattice parameter in the 3.71 - 4.21 A range. The lattice strain of the La0.67Sr0.33MnO3 electrode, determined by the lattice mismatch with the substrate, is critical in the stabilization of the orthorhombic phase of Hf0.5Zr0.5O2. On La0.67Sr0.33MnO3 electrodes tensile strained most of the Hf0.5Zr0.5O2 film is orthorhombic, whereas the monoclinic phase is favored when La0.67Sr0.33MnO3 is relaxed or compressively strained. Therefore, the Hf0.5Zr0.5O2 films on TbScO3 and GdScO3 substrates present substantially enhanced ferroelectric polarization in comparison to films on other substrates, including the commonly used SrTiO3. The capability of having epitaxial doped HfO2 films with controlled phase and polarization is of major interest for a better understanding of the ferroelectric properties and paves the way for fabrication of ferroelectric devices based on nanometric HfO2 films.
The emergent behaviors in thin films of a multiaxial ferroelectric due to an electrochemical coupling between the rotating polarization and surface ions are explored within the framework of the 2-4 Landau-Ginzburg-Devonshire (LGD) thermodynamic potential combined with the Stephenson-Highland (SH) approach. The combined LGD-SH approach allows to describe the electrochemical switching and rotation of polarization vector in the multiaxial ferroelectric film covered by surface ions with a charge density dependent to the relative partial oxygen pressure. We calculate the phase diagrams and analyze the dependence of polarization components on the applied voltage, and discuss the peculiarities of quasi-static ferroelectric, dielectric and piezoelectric hysteresis loops in thin strained multiaxial ferroelectric films. The nonlinear surface screening by oxygen ions makes the diagrams very different from the known diagrams of e.g., strained BaTiO3 films. Quite unexpectedly we predict the appearance of the ferroelectric reentrant phases. Obtained results point on the possibility to control the appearance and features of ferroelectric, dielectric and piezoelectric hysteresis in multiaxial FE films covered by surface ions by varying their concentration via the partial oxygen pressure. The LGD-SH description of a multiaxial FE film can be further implemented within the Bayesian optimization framework, opening the pathway towards predictive materials optimization.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا