Do you want to publish a course? Click here

A note on MLE in logistic regression with a diverging dimension

285   0   0.0 ( 0 )
 Added by Huiming Zhang
 Publication date 2018
and research's language is English
 Authors Huiming Zhang




Ask ChatGPT about the research

This short note is to point the reader to notice that the proof of high dimensional asymptotic normality of MLE estimator for logistic regression under the regime $p_n=o(n)$ given in paper: Maximum likelihood estimation in logistic regression models with a diverging number of covariates. Electronic Journal of Statistics, 6, 1838-1846. is wrong.



rate research

Read More

132 - Martin Wahl 2018
We analyse the prediction error of principal component regression (PCR) and prove non-asymptotic upper bounds for the corresponding squared risk. Under mild assumptions, we show that PCR performs as well as the oracle method obtained by replacing empirical principal components by their population counterparts. Our approach relies on upper bounds for the excess risk of principal component analysis.
In the last decade, the secondary use of large data from health systems, such as electronic health records, has demonstrated great promise in advancing biomedical discoveries and improving clinical decision making. However, there is an increasing concern about biases in association studies caused by misclassification in the binary outcomes derived from electronic health records. We revisit the classical logistic regression model with misclassified outcomes. Despite that local identification conditions in some related settings have been previously established, the global identification of such models remains largely unknown and is an important question yet to be answered. We derive necessary and sufficient conditions for global identifiability of logistic regression models with misclassified outcomes, using a novel approach termed as the submodel analysis, and a technique adapted from the Picard-Lindel{o}f existence theorem in ordinary differential equations. In particular, our results are applicable to logistic models with discrete covariates, which is a common situation in biomedical studies, The conditions are easy to verify in practice. In addition to model identifiability, we propose a hypothesis testing procedure for regression coefficients in the misclassified logistic regression model when the model is not identifiable under the null.
In this note we consider the optimal design problem for estimating the slope of a polynomial regression with no intercept at a given point, say z. In contrast to previous work, which considers symmetric design spaces we investigate the model on the interval $[0, a]$ and characterize those values of $z$, where an explicit solution of the optimal design is possible.
Recently, the well known Liu estimator (Liu, 1993) is attracted researchers attention in regression parameter estimation for an ill conditioned linear model. It is also argued that imposing sub-space hypothesis restriction on parameters improves estimation by shrinking toward non-sample information. Chang (2015) proposed the almost unbiased Liu estimator (AULE) in the binary logistic regression. In this article, some improved unbiased Liu type estimators, namely, restricted AULE, preliminary test AULE, Stein-type shrinkage AULE and its positive part for estimating the regression parameters in the binary logistic regression model are proposed based on the work Chang (2015). The performances of the newly defined estimators are analysed through some numerical results. A real data example is also provided to support the findings.
The logistic regression model is the most popular model for analyzing binary data. In the absence of any prior information, an improper flat prior is often used for the regression coefficients in Bayesian logistic regression models. The resulting intractable posterior density can be explored by running Polson et al.s (2013) data augmentation (DA) algorithm. In this paper, we establish that the Markov chain underlying Polson et al.s (2013) DA algorithm is geometrically ergodic. Proving this theoretical result is practically important as it ensures the existence of central limit theorems (CLTs) for sample averages under a finite second moment condition. The CLT in turn allows users of the DA algorithm to calculate standard errors for posterior estimates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا