Lattice-Based Group Signatures: Achieving Full Dynamicity (and Deniability) with Ease


Abstract in English

In this work, we provide the first lattice-based group signature that offers full dynamicity (i.e., users have the flexibility in joining and leaving the group), and thus, resolve a prominent open problem posed by previous works. Moreover, we achieve this non-trivial feat in a relatively simple manner. Starting with Libert et al.s fully static construction (Eurocrypt 2016) - which is arguably the most efficient lattice-based group signature to date, we introduce simple-but-insightful tweaks that allow to upgrade it directly into the fully dynamic setting. More startlingly, our scheme even produces slightly shorter signatures than the former, thanks to an adaptation of a technique proposed by Ling et al. (PKC 2013), allowing to prove inequalities in zero-knowledge. Our design approach consists of upgrading Libert et al.s static construction (EUROCRYPT 2016) - which is arguably the most efficient lattice-based group signature to date - into the fully dynamic setting. Somewhat surprisingly, our scheme produces slightly shorter signatures than the former, thanks to a new technique for proving inequality in zero-knowledge without relying on any inequality check. The scheme satisfies the strong security requirements of Bootle et al.s model (ACNS 2016), under the Short Integer Solution (SIS) and the Learning With Errors (LWE) assumptions. Furthermore, we demonstrate how to equip the obtained group signature scheme with the deniability functionality in a simple way. This attractive functionality, put forward by Ishida et al. (CANS 2016), enables the tracing authority to provide an evidence that a given user is not the owner of a signature in question. In the process, we design a zero-knowledge protocol for proving that a given LWE ciphertext does not decrypt to a particular message.

Download