Do you want to publish a course? Click here

Interplay between superconductivity and magnetism in one-unit-cell LaAlO3 capped with SrTiO3

117   0   0.0 ( 0 )
 Added by Yong-Joo Doh
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

To form a conducting layer at the interface between the oxide insulators LaAlO3 and SrTiO3, the LaAlO3 layer on the SrTiO3 substrate must be at least four unit-cells-thick. The LaAlO3 SrTiO3 heterointerface thus formed exhibits various intriguing phenomena such as ferromagnetism and superconductivity. It has been widely studied for being a low-dimensional ferromagnetic oxide superconducting system with a strong gate-tunable spin-orbit interaction. However, its lack of stability and environmental susceptiveness have been an obstacle to its further experimental investigations and applications. Here, we demonstrate that capping the bilayer with SrTiO3 relieves this thickness limit, while enhancing the stability and controllability of the interface. In addition, the SrTiO3-capped LaAlO3 exhibits unconventional superconductivity; the critical current dramatically increases under a parallel magnetic field, and shows a reversed hysteresis contrary to the conventional hysteresis of magnetoresistance. Its superconducting energy gap of $Delta sim 1.31k_BT_c$ also deviates from conventional BCS-type superconductivity. The oxide trilayer could be a robust platform for studying the extraordinary interplay of superconductivity and ferromagnetism at the interface electron system between LaAlO3 and SrTiO3.



rate research

Read More

The discovery of a two-dimensional (2D) electron gas at the (110)-oriented LaAlO3/SrTiO3 in- terface provided us with the opportunity to probe the effect of crystallographic orientation and the ensuing electronic reconstructions on interface properties beyond the conventional (001)-orientation. At temperatures below 200 mK, we have measured 2D superconductivity with a spatial extension significantly larger (d approx. 24 - 30 nm) than previously reported for (001)-oriented LaAlO3/SrTiO3 interfaces (d approx. 10 nm). The more extended superconductivity brings about the absence of violation of the Pauli paramagnetic limit for the upper critical fields, signaling the distinctive nature of the electronic structure of the (110)-oriented interface with respect to their (001)-counterparts
Time-reversal symmetry breaking (TRSB) in UTe2 was inferred from observations of a spontaneous Kerr response in the superconducting state after cooling in zero magnetic field, while a finite c-axis magnetic field training was further used to determine the nature of the non-unitary composite order-parameter of this material. Here we present an extensive study of the magnetic-field-trained Kerr effect, which unveils a unique critical state of pinned ferromagnetic vortices. We show that a remanent Kerr signal that appears following the removal of a training magnetic field, which reflects the response of the TRSB order parameter and the external magnetic field through the paramagnetic susceptibility. This unambiguously demonstrate the importance of the ferromagnetic fluctuations and their intimate relation to the composite order parameter. Focusing the measurement to the center of the sample, we are able to accurately determine the maximum field that is screened by the critical state and the respective critical current. Measurements in the presence of magnetic field show the tendency of the superconductor to produce shielding currents that oppose the increase in vortex-induced magnetization due to the diverging paramagnetic susceptibility.
241 - A. Ron , Y. Dagan 2014
We grow a tiled structure of insulating two dimensional LaAlO3/SrTiO3 interfaces composed of alternating one and three LaAlO3 unit cells. The boundary between two tiles is conducting. At low temperatures this conductance exhibits quantized steps as a function of gate voltage indicative of a one dimensional channel. The step size of half the quantum of conductance is an evidence for absence of spin degeneracy.
Possible ferromagnetism induced in otherwise non-magnetic materials has been motivating intense research in complex oxide heterostructures. Here we show that a confined magnetism is realized at the interface between SrTiO3 and two insulating polar oxides, BiMnO3 and LaAlO3. By using polarization dependent x-ray absorption spectroscopy, we find that in both cases the magnetic order is stabilized by a negative exchange interaction between the electrons transferred to the interface and local magnetic moments. These local magnetic moments are associated to Ti3+ ions at the interface itself for LaAlO3/SrTiO3 and to Mn3+ ions in the overlayer for BiMnO3/SrTiO3. In LaAlO3/SrTiO3 the induced magnetic moments are quenched by annealing in oxygen, suggesting a decisive role of oxygen vacancies in the stabilization of interfacial magnetism.
We report superconductivity in quasi-1D nanostructures created at the LaAlO3/SrTiO3 interface. Nanostructures having line widths w~10 nm are formed from the parent two-dimensional electron liquid using conductive atomic force microscope lithography. Nanowire cross-sections are small compared to the superconducting coherence length in LaAlO3/SrTiO3 (w<<xi~100 nm), placing them in the quasi-1D regime. Broad superconducting transitions with temperature and finite resistances in the superconducting state well below Tc~200 mK are observed. V-I curves show switching between the superconducting and normal states that are characteristic of superconducting nanowires. The four-terminal resistance in the superconducting state shows an unusual dependence on the current path, varying by as much as an order of magnitude.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا