Active qubit reset is a key operation in many quantum algorithms, and particularly in error correction codes. Here, we experimentally demonstrate a reset scheme of a three level transmon artificial atom coupled to a large bandwidth resonator. The reset protocol uses a microwave-induced interaction between the $|f,0rangle$ and $|g,1rangle$ states of the coupled transmon-resonator system, with $|grangle$ and $|frangle$ denoting the ground and second excited states of the transmon, and $|0rangle$ and $|1rangle$ the photon Fock states of the resonator. We characterize the reset process and demonstrate reinitialization of the transmon-resonator system to its ground state with $0.2%$ residual excitation in less than $500 , rm{ns}$. Our protocol is of practical interest as it has no requirements on the architecture, beyond those for fast and efficient single-shot readout of the transmon, and does not require feedback.