A 3D Non-Stationary Wideband Geometry-Based Channel Model for MIMO Vehicle-to-Vehicle Communication System


Abstract in English

In this paper, we present a three-dimensional (3D) non-wide-sense stationary (non-WSS) wideband geometry-based channel model for vehicle-to-vehicle (V2V) communication environments. We introduce a two-cylinder model to describe moving vehicles as well as multiple confocal semi-ellipsoid models to depict stationary roadside scenarios. The received signal is constructed as a sum of the line-of-sight (LoS), single-, and double-bounced rays with different energies. Accordingly, the proposed channel model is sufficient for depicting a wide variety of V2V environments, such as macro-, micro-, and picocells. The relative movement between the mobile transmitter (MT) and mobile receiver (MR) results in time-variant geometric statistics that make our channel model non-stationary. Using this channel model, the proposed channel statistics, i.e., the time-variant space correlation functions (CFs), frequency CFs, and corresponding Doppler power spectral density (PSD), were studied for different relative moving time instants. The numerical results demonstrate that the proposed 3D non-WSS wideband channel model is practical for characterizing real V2V channels.

Download