Vortex patterns and the critical rotational frequency in rotating dipolar Bose-Einstein condensates


Abstract in English

Based on the two-dimensional mean-field equations for pancake-shaped dipolar Bose-Einstein condensates in a rotating frame with both attractive and repulsive dipole-dipole interaction (DDI) as well as arbitrary polarization angle, we study the profiles of the single vortex state and show how the critical rotational frequency change with the s-wave contact interaction strengths, DDI strengths and the polarization angles. In addition, we find numerically that at the `magic angle $vartheta=arccos(sqrt{3}/3)$, the critical rotational frequency is almost independent of the DDI strength. By numerically solving the dipolar GPE at high rotational speed, we identify different patterns of vortex lattices which strongly depend on the polarization direction. As a result, we undergo a study of vortex lattice structures for the whole regime of polarization direction and find evidence that the vortex lattice orientation tends to be aligned with the direction of the dipoles.

Download