Do you want to publish a course? Click here

Scalar Casimir effect in a linearly expanding universe

113   0   0.0 ( 0 )
 Added by Aram Saharian
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate quantum vacuum effects for a massive scalar field, induced by two planar boundaries in background of a linearly expanding spatially flat Friedmann-Robertson-Walker spacetime for an arbitrary number of spatial dimensions. For the Robin boundary conditions and for general curvature coupling parameter, a complete set of mode functions is presented and the related Hadamard function is evaluated. The results are specified for the most important special cases of the adiabatic and conformal vacuum states. The vacuum expectation values of the field squared and of the energy-momentum tensor are investigated for a massive conformally coupled field. The vacuum energy-momentum tensor, in addition to the diagonal components, has nonzero off-diagonal component describing energy flux along the direction perpendicular to the plates. The influence of the gravitational field on the local characteristics of the vacuum state is essential at distances from the boundaries larger than the curvature radius of the background spacetime. In contrast to the Minkowskian bulk, at large distances the boundary-induced expectation values follow as power law for both massless and massive fields. Another difference is that the Casimir forces acting on the separate plates do not coincide if the corresponding Robin coefficients are different. At large separations between the plates the decay of the forces is power law. We show that during the cosmological expansion the forces may change the sign.



rate research

Read More

The influence of a spherical boundary on the vacuum fluctuations of a massive scalar field is investigated in background of $(D+1)$-dimensional Milne universe, assuming that the field obeys Robin boundary condition on the sphere. The normalized mode functions are derived for the regions inside and outside the sphere and different vacuum states are discussed. For the conformal vacuum, the Hadamard function is decomposed into boundary-free and sphere-induced contributions and an integral representation is obtained for the latter in both the interior and exterior regions. As important local characteristics of the vacuum state the vacuum expectation values (VEVs) of the field squared and of the energy-momentum tensor are investigated. It is shown that the vacuum energy-momentum tensor has an off-diagonal component that corresponds to the energy flux along the radial direction. Depending on the coefficient in Robin boundary condition the sphere-induced contribution to the vacuum energy and the energy flux can be either positive or negative. At late stages of the expansion and for a massive field the decay of the sphere-induced VEVs, as functions of time, is damping oscillatory. The geometry under consideration is conformally related to that for a static spacetime with negative constant curvature space and the sphere-induced contributions in the corresponding VEVs are compared.
We investigate combined effects of nontrivial topology, induced by a cosmic string, and boundaries on the fermionic condensate and the vacuum expectation value (VEV) of the energy-momentum tensor for a massive fermionic field. As geometry of boundaries we consider two plates perpendicular to the string axis on which the field is constrained by the MIT bag boundary condition. By using the Abel-Plana type summation formula, the VEVs in the region between the plates are decomposed into the boundary-free and boundary-induced contributions for general case of the planar angle deficit. The boundary-induced parts in both the fermionic condensate and the energy-momentum tensor vanish on the cosmic string. Fermionic condensate is positive near the string and negative al large distances, whereas the vacuum energy density is negative everywhere. The radial stress is equal to the energy density. For a massless field, the boundary-induced contribution in the VEV of the energy-momentum tensor is different from zero in the region between the plates only and it does not depend on the coordinate along the string axis. In the region between the plates and at large distances from the string, the decay of the topological part is exponential for both massive and massless fields. This behavior is in contrast to that for the VEV of the energy-momentum tensor in the boundary-free geometry with the power law decay for a massless field. The vacuum pressure on the plates is inhomogeneous and vanishes at the location of the string. The corresponding Casimir forces are attractive.
In this paper, we investigate the thermal effect on the Casimir energy associated with a massive scalar quantum field confined between two large parallel plates in a CPT-even, aether-like Lorentz-breaking scalar field theory. In order to do that we consider a nonzero chemical potential for the scalar field assumed to be in thermal equilibrium at some finite temperature. The calculations of the energies are developed by using the Abel-Plana summation formula, and the corresponding results are analyzed in several asymptotic regimes of the parameters of the system, like mass, separations between the plates and temperature.
In this paper, we evaluate the Casimir energy and pressure for a massive fermionic field confined in the region between two parallel plates. In order to implement this confinement we impose the standard MIT bag boundary on the plates for the fermionic field. In this paper we consider a quantum field theory model with a CPT even, aether-like Lorentz symmetry violation. It turns out that the fermionic Casimir energy and pressure depend on the direction of the constant vector that implements the Lorentz symmetry breaking.
157 - Shoichi Ichinose 2012
We regard the Casimir energy of the universe as the main contribution to the cosmological constant. Using 5 dimensional models of the universe, the flat model and the warped one, we calculate Casimir energy. Introducing the new regularization, called {it sphere lattice regularization}, we solve the divergence problem. The regularization utilizes the closed-string configuration. We consider 4 different approaches: 1) restriction of the integral region (Randall-Schwartz), 2) method of 1) using the minimal area surfaces, 3) introducing the weight function, 4) {it generalized path-integral}. We claim the 5 dimensional field theories are quantized properly and all divergences are renormalized. At present, it is explicitly demonstrated in the numerical way, not in the analytical way. The renormalization-group function ($be$-function) is explicitly obtained. The renormalization-group flow of the cosmological constant is concretely obtained.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا