Chiral symmetry breaking and monopoles in gauge theories


Abstract in English

QCD monopoles are magnetically charged quasiparticles whose Bose-Einstein condensation (BEC) at $T<T_c$ creates electric confinement and flux tubes. The magnetic scenario of QCD proposes that scattering on the non-condensed component of the monopole ensemble at $T>T_c$ plays an important role in explaining the properties of strongly coupled quark-gluon plasma (sQGP) near the deconfinement temperature. In this paper, we study the phenomenon of chiral symmetry breaking and its relation to magnetic monopoles. Specifically, we study the eigenvalue spectrum of the Dirac operator in the basis of fermionic zero modes in an SU(2) monopole background. We find that as the temperature approaches the deconfinement temperature $T_c$ from above, the eigenvalue spectrum has a finite density at $omega = 0$, indicating the presence of a chiral condensate. In addition, we find the critical scaling of the eigenvalue gap to be consistent with that of the correlation length in the 3d Ising model and the BEC transition of monopoles on the lattice.

Download