No Arabic abstract
We revisit the results of Zamolodchikov and others on the deformation of two-dimensional quantum field theory by the determinant $det T$ of the stress tensor, commonly referred to as $Toverline T$. Infinitesimally this is equivalent to a random coordinate transformation, with a local action which is, however, a total derivative and therefore gives a contribution only from boundaries or nontrivial topology. We discuss in detail the examples of a torus, a finite cylinder, a disk and a more general simply connected domain. In all cases the partition function evolves according to a linear diffusion-type equation, and the deformation may be viewed as a kind of random walk in moduli space. We also discuss possible generalizations to higher dimensions.
We point out that the arguments of Zamolodchikov and others on the $Toverline T$ and similar deformations of two-dimensional field theories may be extended to the more general non-Lorentz invariant case, for example non-relativistic and Lifshitz-type theories. We derive results for the finite-size spectrum and $S$-matrix of the deformed theories.
We show that the two-dimensional $N=(2,2)$ Volkov-Akulov action that describes the spontaneous breaking of supersymmetry is a $Tbar{T}$ deformation of a free fermionic theory. Our findings point toward a possible relation between nonlinear supersymmetry and $T bar T$ flows.
These are lecture notes for the course Poisson geometry and deformation quantization given by the author during the fall semester 2020 at the University of Zurich. The first chapter is an introduction to differential geometry, where we cover manifolds, tensor fields, integration on manifolds, Stokes theorem, de Rhams theorem and Frobenius theorem. The second chapter covers the most important notions of symplectic geometry such as Lagrangian submanifolds, Weinsteins tubular neighborhood theorem, Hamiltonian mechanics, moment maps and symplectic reduction. The third chapter gives an introduction to Poisson geometry where we also cover Courant structures, Dirac structures, the local splitting theorem, symplectic foliations and Poisson maps. The fourth chapter is about deformation quantization where we cover the Moyal product, $L_infty$-algebras, Kontsevichs formality theorem, Kontsevichs star product construction through graphs, the globalization approach to Kontsevichs star product and the operadic approach to formality. The fifth chapter is about the quantum field theoretic approach to Kontsevichs deformation quantization where we cover functional integral methods, the Moyal product as a path integral quantization, the Faddeev-Popov and BRST method for gauge theories, infinite-dimensional extensions, the Poisson sigma model, the construction of Kontsevichs star product through a perturbative expansion of the functional integral quantization for the Poisson sigma model for affine Poisson structures and the general construction.
We develop a reformulation of the functional integral for bosons in terms of bilocal fields. Correlation functions correspond to quantum probabilities instead of probability amplitudes. Discrete and continuous global symmetries can be treated similar to the usual formalism. Situations where the formalism can be interpreted in terms of a statistical field theory in Minkowski space are characterized by violations of unitarity at very large momentum scales. Renormalization group equations suggest that unitarity can be essentially restored by strong fluctuation effects.
Motivated by the increasing connections between information theory and high-energy physics, particularly in the context of the AdS/CFT correspondence, we explore the information geometry associated to a variety of simple systems. By studying their Fisher metrics, we derive some general lessons that may have important implications for the application of information geometry in holography. We begin by demonstrating that the symmetries of the physical theory under study play a strong role in the resulting geometry, and that the appearance of an AdS metric is a relatively general feature. We then investigate what information the Fisher metric retains about the physics of the underlying theory by studying the geometry for both the classical 2d Ising model and the corresponding 1d free fermion theory, and find that the curvature diverges precisely at the phase transition on both sides. We discuss the differences that result from placing a metric on the space of theories vs. states, using the example of coherent free fermion states. We compare the latter to the metric on the space of coherent free boson states and show that in both cases the metric is determined by the symmetries of the corresponding density matrix. We also clarify some misconceptions in the literature pertaining to different notions of flatness associated to metric and non-metric connections, with implications for how one interprets the curvature of the geometry. Our results indicate that in general, caution is needed when connecting the AdS geometry arising from certain models with the AdS/CFT correspondence, and seek to provide a useful collection of guidelines for future progress in this exciting area.