No Arabic abstract
Recent investigations of RF copper structures operated at cryogenic temperatures performed by a SLAC-UCLA collaboration have shown a dramatic increase in the maximum surface electric field, to 500 MV/m. We examine use of these fields to enable very high field cryogenic photoinjectors that can attain over an order of magnitude increase in peak electron beam brightness. We present beam dynamics studies relevant to X-ray FEL injectors, using start-to-end simulations that show the high brightness and low emittance of this source enables operation of a compact FEL reaching a photon energy of 80 keV. The preservation of beam brightness in compression, exploiting micro-bunching techniques is discussed. While the gain in brightness at high field is due to increase of the emission current density, further increases in brightness due to lowering of the intrinsic cathode emittance in cryogenic operation are also enabled. While the original proposal for this type of cryogenic, ultra-high field photoinjector has emphasized S-band designs, there are numerous potential advantages that may be conferred by operation in C-band. We examine issues related to experimental implementation in C-band, and expected performance of this type of device in a future hard X-ray FEL such as MaRIE.
Recent studies of the performance of radio-frequency (RF) copper cavities operated at cryogenic temperatures have shown a dramatic increase in the maximum achievable surface electric field. We propose to exploit this development to enable a new generation of photoinjectors operated at cryogenic temperatures that may attain, through enhancement of the launch field at the photocathode, a significant increase in five-dimensional electron beam brightness. We present detailed studies of the beam dynamics associated with such a system, by examining an S-band photoinjector operated at 250 MV/m peak electric field that reaches normalized emittances in the 40 nm-rad range at charges (100-200 pC) suitable for use in a hard X-ray free-electron laser (XFEL) scenario based on the LCLS. In this case, we show by start-to-end simulations that the properties of this source may give rise to high efficiency operation of an XFEL, and permit extension of the photon energy reach by an order of magnitude, to over 80 keV. The brightness needed for such XFELs is achieved through low source emittances in tandem with high current after compression. In the XFEL examples analyzed, the emittances during final compression are preserved using micro-bunching techniques. Extreme low emittance scenarios obtained at pC charge, appropriate for significantly extending temporal resolution limits of ultrafast electron diffraction and microscopy experiments, are also reviewed. While the increase in brightness in a cryogenic photoinjector is mainly due to the augmentation of the emission current density via field enhancement, further possible increases in performance arising from lowering the intrinsic cathode emittance in cryogenic operation are also analyzed. Issues in experimental implementation, including cavity optimization for lowering cryogenic thermal dissipation, external coupling, and cryo-cooler system are discussed.
CW photoinjectors operating at high accelerating gradients promise to revolutionize many areas of science and applications. They can establish the basis for a new generation of monochromatic X-ray free electron lasers, high brightness hadron beams, or a new generation of microchip production. In this letter we report on the record-performing superconducting RF electron gun with $textrm{CsK}_{2}textrm{Sb}$ photocathode. The gun is generating high charge electron bunches (up to 10 nC/bunch) and low transverse emittances, while operating for months with a single photocathode. This achievement opens a new era in generating high-power beams with a very high average brightness.
Beam quality preservation during transport of high-brightness electron beams is of general concern in the design of modern accelerators. Methods to manage incoherent synchrotron radiation (ISR) have been in place for decades; as beam brightness has improved coherent synchrotron radiation (CSR) and the microbunching instability (uBI) have emerged as performance limitations. We apply the compensation analysis of diMitri, Cornacchia, and Spampinati - as previously used by Borland - to the design of transport systems for use with low-emittance beams, and find that appropriately configured second order achromats will suppress transverse emittance growth due to CSR and appear to limit uBI gain.
Plasma waves generated in the wake of intense, relativistic laser or particle beams can accelerate electron bunches to giga-electronvolt (GeV) energies in centimetre-scale distances. This allows the realization of compact accelerators having emerging applications, ranging from modern light sources such as the free-electron laser (FEL) to energy frontier lepton colliders. In a plasma wakefield accelerator, such multi-gigavolt-per-metre (GV m$^{-1}$) wakefields can accelerate witness electron bunches that are either externally injected or captured from the background plasma. Here we demonstrate optically triggered injection and acceleration of electron bunches, generated in a multi-component hydrogen and helium plasma employing a spatially aligned and synchronized laser pulse. This plasma photocathode decouples injection from wake excitation by liberating tunnel-ionized helium electrons directly inside the plasma cavity, where these cold electrons are then rapidly boosted to relativistic velocities. The injection regime can be accessed via optical density down-ramp injection, is highly tunable and paves the way to generation of electron beams with unprecedented low transverse emittance, high current and 6D-brightness. This experimental path opens numerous prospects for transformative plasma wakefield accelerator applications based on ultra-high brightness beams.
High-gradient CW photo-injectors operating at high accelerating gradients promise to revolutionize many sciences and applications. They can establish the basis for super-bright monochromatic X-ray free-electron lasers, super-bright hadron beams, nuclear- waste transmutation or a new generation of microchip production. In this letter we report on our operation of a superconducting RF electron gun with a record-high accelerating gradient at the CsK2Sb photocathode (i.e. ~ 20 MV/m) generating a record-high bunch charge (i.e., 3 nC). We briefly describe the system and then detail our experimental results. This achievement opens new era in generating high-power electron beams with a very high brightness.