Do you want to publish a course? Click here

Commutativity in Lagrangian and Hamiltonian Mechanics

74   0   0.0 ( 0 )
 Added by Yuri B. Suris
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The main result of this note is a characterization of the Poisson commutativity of Hamilton functions in terms of their principal action functions.



rate research

Read More

98 - G. Sardanashvily 2015
Non-autonomous non-relativistic mechanics is formulated as Lagrangian and Hamiltonian theory on fibre bundles over the time axis R. Hamiltonian mechanics herewith can be reformulated as particular Lagrangian theory on a momentum phase space. This facts enable one to apply Noethers first theorem both to Lagrangian and Hamiltonian mechanics. By virtue of Noethers first theorem, any symmetry defines a symmetry current which is an integral of motion in Lagrangian and Hamiltonian mechanics. The converse is not true in Lagrangian mechanics where integrals of motion need not come from symmetries. We show that, in Hamiltonian mechanics, any integral of motion is a symmetry current. In particular, an energy function relative to a reference frame is a symmetry current along a connection on a configuration bundle which is this reference frame. An example of the global Kepler problem is analyzed in detail.
We analyze the relation of the notion of a pluri-Lagrangian system, which recently emerged in the theory of integrable systems, to the classical notion of variational symmetry, due to E. Noether. We treat classical mechanical systems and show that, for any Lagrangian system with $m$ commuting variational symmetries, one can construct a pluri-Lagrangian 1-form in the $(m+1)$-dimensional time, whose multi-time Euler-Lagrange equations coincide with the original system supplied with $m$ commuting evolutionary flows corresponding to the variational symmetries. We also give a Hamiltonian counterpart of this construction, leading, for any system of commuting Hamiltonian flows, to a pluri-Lagrangian 1-form with coefficients depending on functions in the phase space.
In this paper, we survey our recent results on the variational formulation of nonequilibrium thermodynamics for the finite dimensional case of discrete systems as well as for the infinite dimensional case of continuum systems. Starting with the fundamental variational principle of classical mechanics, namely, Hamiltons principle, we show, with the help of thermodynamic systems with gradually increasing level complexity, how to systematically extend it to include irreversible processes. In the finite dimensional cases, we treat systems experiencing the irreversible processes of mechanical friction, heat and mass transfer, both in the adiabatically closed and in the open cases. On the continuum side, we illustrate our theory with the example of multicomponent Navier-Stokes-Fourier systems.
In this paper, we introduce the notion of port-Lagrangian systems in nonequilibrium thermodynamics, which is constructed by generalizing the notion of port-Lagrangian systems for nonholonomic mechanics proposed in Yoshimura and Marsden [2006c], where the notion of interconnections is described in terms of Dirac structures. The notion of port-Lagrangian systems in nonequilibrium thermodynamics is deduced from the variational formulation of nonequilibrium thermodynamics developed in Gay-Balmaz and Yoshimura [2017a,2017b]. It is a type of Lagrange-dAlembert principle associated to a specific class of nonlinear nonholonomic constraints, called phenomenological constraints, which are associated to the entropy production equation of the system. To these phenomenological constraints are systematically associated variational constraints, which need to be imposed on the variations considered in the principle. In this paper, by specifically focusing on the cases of simple thermodynamic systems with constraints, we show how the interconnections in thermodynamics can be also described by Dirac structures on the Pontryagin bundle as well as on the cotangent bundle of the thermodynamic configuration space. Each of these Dirac structures is induced from the variational constraint. Furthermore, the variational structure associated to this Dirac formulation is presented in the context of the Lagrange-dAlembert-Pontryagin principle. We illustrate our theory with some examples such as a cylinder-piston with ideal gas as well as an LCR circuit with entropy production due to a resistor.
We show that Hamiltonian monodromy of an integrable two degrees of freedom system with a global circle action can be computed by applying Morse theory to the Hamiltonian of the system. Our proof is based on Takenss index theorem, which specifies how the energy-h Chern number changes when h passes a non-degenerate critical value, and a choice of admissible cycles in Fomenko-Zieschang theory. Connections of our result to some of the existing approaches to monodromy are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا