Mapping topological to conformal field theories through strange correlators


Abstract in English

We extend the concept of strange correlators, defined for symmetry-protected phases in [You et al., Phys. Rev. Lett. 112, 247202 (2014)], to topological phases of matter by taking the inner product between string-net ground states and product states. The resulting two-dimensional partition functions are shown to be either critical or symmetry broken, as the corresponding transfer matrices inherit all matrix product operator symmetries of the string-net states. For the case of critical systems, those non-local matrix product operator symmetries are the lattice remnants of topological conformal defects in the field theory description. Following [Aasen et al., J. Phys. A 49, 354001 (2016)], we argue that the different conformal boundary conditions can be obtained by applying the strange correlator concept to the different topological sectors of the string-net obtained from Ocneanus tube algebra. This is demonstrated by calculating the conformal field theory spectra on the lattice in the different topological sectors for the Fibonacci/hard-hexagon and Ising string-net. Additionally, we provide a complementary perspective on symmetry-preserving real-space renormalization by showing how known tensor network renormalization methods can be understood as the approximate truncation of an exactly coarse-grained strange correlator.

Download