Do you want to publish a course? Click here

D-term, strong forces in the nucleon, and their applications

100   0   0.0 ( 0 )
 Added by Peter Schweitzer
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

The D-term is a fundamental particle property which is defined through the matrix elements of the energy-momentum tensor and as such in principle on equal footing with mass and spin. Yet the experimental information on the D-term of any hadron is very scarce. The D-term of the nucleon can be inferred from studies of hard-exclusive reactions, and its measurement will give valuable insights on the dynamics, structure, and the internal forces inside the nucleon. We review the latest developments and the fascinating applications of the D-term and other energy-momentum tensor (EMT) form factors. We also suggest a definition of the mechanical mean square radius and make a prediction for its size.



rate research

Read More

The hadronic form factors of the energy-momentum tensor (EMT) have attracted considerable interest in recent literature. This concerns especially the D-term form factor D(t) with its appealing interpretation in terms of internal forces. With their focus on hadron structure, theoretical studies so far have concentrated on strongly interacting systems with short-range forces. Effects on the EMT due to long-range forces like the electromagnetic interaction have not yet been studied. Electromagnetic forces play a small role in the balance of forces inside the proton, but their long-range nature introduces new features which are not present in systems with short-range forces. We use a simple but consistent classical field theoretical model of the proton to show how the presence of long-range forces alters some notions taken for granted in short-range systems. Our results imply that a more careful definition of the D-term is required when long-range forces are present.
The energy-momentum tensor (EMT) form factors pave new ways for exploring hadron structure. Especially the D-term related to the EMT form factor D(t) has received a lot of attention due to its attractive physical interpretation in terms of mechanical properties. We study the nucleon EMT form factors and the associated densities in the bag model which we formulate for an arbitrary number of colors Nc and show that the EMT form factors are consistently described in this model in the large-Nc limit. The simplicity of the model allows us to test in a lucid way many theoretical concepts related to EMT form factors and densities including recently introduced concepts like normal and tangential forces, or monopole and quadrupole contributions to the angular momentum distribution. We also study the D-terms of rho-meson, Roper resonance, other N* states and Delta-resonances. Among the most interesting outcomes is the lucid demonstration of the deeper connection of EMT conservation, stability, the virial theorem and the negative sign of the D-term.
127 - Takumi Doi , Sinya Aoki 2011
Three-nucleon forces (3NF) are investigated from two-flavor lattice QCD simulations. We utilize the Nambu-Bethe-Salpeter (NBS) wave function to determine two-nucleon forces (2NF) and 3NF in the same framework. As a first exploratory study, we extract 3NF in which three nucleons are aligned linearly with an equal spacing. This is the simplest geometrical configuration which reduces the huge computational cost of calculating the NBS wave function. Quantum numbers of the three-nucleon system are chosen to be (I, J^P)=(1/2,1/2^+) (the triton channel). Lattice QCD simulations are performed using N_f=2 dynamical clover fermion configurations at the lattice spacing of a = 0.156 fm on a 16^3 x 32 lattice with a large quark mass corresponding to m_pi= 1.13 GeV. We find repulsive 3NF at short distance in the triton channel. Several sources of systematic errors are also discussed.
169 - S. Durr , Z. Fodor , J. Frison 2010
A status report is given for a joint project of the Budapest-Marseille-Wuppertal collaboration and the Regensburg group to study the quark mass-dependence of octet baryons in SU(3) Baryon XPT. This formulation is expected to extend to larger masses than Heavy-Baryon XPT. Its applicability is tested with 2+1 flavor data which cover three lattice spacings and pion masses down to about 190 MeV, in large volumes. Also polynomial and rational interpolations in M_pi^2 and M_K^2 are used to assess the uncertainty due to the ansatz. Both frameworks are combined to explore the precision to be expected in a controlled determination of the nucleon sigma term and strangeness content.
We investigate the two-dimensional transverse charge distributions of the transversely polarized nucleon. As the longitudinal momentum ($P_z$) of the nucleon increases, the electric dipole moment is induced, which causes the displacement of the transverse charge and magnetization distributions of the nucleon. The induced dipole moment of the proton reaches its maximum value at around $P_z approx 3.2$ GeV due to the kinematical reason. We also investigate how the Abel transformations map the three-dimensional charge and magnetization distributions in the Breit frame on to the transverse charge and magnetization ones in the infinite momentum frame.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا