Do you want to publish a course? Click here

Resolving discrete pulsar spin-down states with current and future instrumentation

59   0   0.0 ( 0 )
 Added by Benjamin Shaw
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

An understanding of pulsar timing noise offers the potential to improve the timing precision of a large number of pulsars as well as facilitating our understanding of pulsar magnetospheres. For some sources, timing noise is attributable to a pulsar switching between two different spin-down rates $(dot{ u})$. Such transitions may be common but difficult to resolve using current techniques. In this work, we use simulations of $dot{ u}$-variable pulsars to investigate the likelihood of resolving individual $dot{ u}$ transitions. We inject step-changes in the value of $dot{ u}$ with a wide range of amplitudes and switching timescales. We then attempt to redetect these transitions using standard pulsar timing techniques. The pulse arrival-time precision and the observing cadence are varied. Limits on $dot{ u}$ detectability based on the effects such transitions have on the timing residuals are derived. With the typical cadences and timing precision of current timing programs, we find we are insensitive to a large region of $Delta dot{ u}$ parameter space which encompasses small, short timescale switches. We find, where the rotation and emission states are correlated, that using changes to the pulse shape to estimate $dot{ u}$ transition epochs, can improve detectability in certain scenarios. The effects of cadence on $Delta dot{ u}$ detectability are discussed and we make comparisons with a known population of intermittent and mode-switching pulsars. We conclude that for short timescale, small switches, cadence should not be compromised when new generations of ultra-sensitive radio telescopes are online.



rate research

Read More

138 - Robert D. Ferdman 2010
The European Pulsar Timing Array (EPTA) is a multi-institutional, multi-telescope collaboration, with the goal of using high-precision pulsar timing to directly detect gravitational waves. In this article we discuss the EPTA member telescopes, current achieved timing precision, and near-future goals. We report a preliminary upper limit to the amplitude of a gravitational wave background. We also discuss the Large European Array for Pulsars, in which the five major European telescopes involved in pulsar timing will be combined to provide a coherent array that will give similar sensitivity to the Arecibo radio telescope, and larger sky coverage.
The Calar Alto Observatory, located at 2168m height above the sea level in continental Europe, holds a significant number of astronomical telescopes and experiments, covering a large range of the electromagnetic domain, from gamma-ray to near-infrared. It is a very well characterized site, with excellent logistics. Its main telescopes includes a large suite of instruments. At the present time, new instruments, namely CAFE, PANIC and Carmenes, are under development. We are also planning a new operational scheme in order to optimize the observatory resources.
Through high-precision radio timing observations, we show that five recycled pulsars in the direction of the Galactic Centre (GC) have anomalous spin period time derivative ($dot P$) measurements -- PSRs J1748$-$3009, J1753$-$2819, J1757$-$2745, and J1804$-$2858 show negative values of $dot P$ and PSR J1801$-$3210 is found to have an exceptionally small value of $dot P$. We attribute these observed $dot P$ measurements to acceleration of these pulsars along their lines-of-sight (LOSs) due to the Galactic gravitational field. Using models of the Galactic mass distribution and pulsar velocities, we constrain the distances to these pulsars, placing them on the far-side of the Galaxy, providing the first accurate distance measurements to pulsars located in this region and allowing us to consider the electron density along these LOSs. We find the new electron density model YMW16 to be more consistent with these observations than the previous model NE2001. The LOS dynamics further constrain the model-dependent intrinsic $dot P$ values for these pulsars and they are consistent with measurements for other known pulsars. In the future, the independent distance measurements to these and other pulsars near the GC would allow us to constrain the Galactic gravitational potential more accurately.
We probe ultra-low-frequency gravitational waves (GWs) with statistics of spin-down rates of milli-second pulsars (MSPs) by a method proposed in our prevous work (Yonemaru et al. 2016). The considered frequency range is $10^{-12}{rm Hz} lesssim f_{rm GW} lesssim 10^{-10}$Hz, which cannot be accessed by the conventional pulsar timing array. The effect of such low-frequency GWs appears as a bias to spin-down rates which has a quadrupole pattern in the sky. We use the skewness of the spin-down rate distribution and the number of MSPs with negative spin-down rates to search for the bias induced by GWs. Applying this method to 149 MSPs selected from the ATNF pulsar catalog, we derive upper bounds on the time derivative of the GW amplitudes of $dot{h} < 6.2 times 10^{-18}~{rm sec}^{-1}$ and $dot{h} < 8.1 times 10^{-18}~{rm sec}^{-1}$ in the directions of the Galactic Center and M87, respectively. Approximating the GW amplitude as $dot{h} sim 2 pi f_{rm GW} h$, the bounds translate into $h < 3 times 10^{-9}$ and $h < 4 times 10^{-9}$, respectively, for $f_{rm GW} = 1/(100~{rm yr})$. Finally, we give the implications to possible super-massive black hole binaries at these sites.
We present a timing solution for the 598.89 Hz accreting millisecond pulsar, IGR J00291+5934, using Rossi X-ray Timing Explorer data taken during the two outbursts exhibited by the source on 2008 August and September. We estimate the neutron star spin frequency and we refine the system orbital solution. To achieve the highest possible accuracy in the measurement of the spin frequency variation experienced by the source in-between the 2008 August outburst and the last outburst exhibited in 2004, we re-analysed the latter considering the whole data set available. We find that the source spins down during quiescence at an average rate of { u}dot_{sd}=(-4.1 +/- 1.2)E-15 Hz/s. We discuss possible scenarios that can account for the long-term neutron star spin-down in terms of either magneto-dipole emission, emission of gravitational waves, and a propeller effect. If interpreted in terms of magneto-dipole emission, the measured spin down translates into an upper limit to the neutron star magnetic field, B<=3E+08 G, while an upper limit to the average neutron star mass quadrupole moment of Q<=2E+36 g cm^2 is set if the spin down is interpreted in terms of the emission of gravitational waves.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا